Pressure sensors enable customized solutions for almost any task in pressure transmitters – absolutely precise and reliable. We have to consider installation conditions (flush, non-flush), application requirements (hygienic, industrial) and media properties.


Types of pressure

Absolute:

Relative:

Compound:

Differential:

Teaser_Know-how_E-Zchn-6564_600x338.jpg

Pressure sensor technology

Know-how_Pressure-sensors_Piezoresistiv Industriell_EN.png

Silicon semiconductor sensor, industrial connection (piezo-resistive pressure measurement)

In semiconductor materials, the change in the specific resistance and thus of the signal results from the variable mobility of the electrons in the crystalline structure. This mobility is affected by the mechanical load. The sensitive silicon chip and the process medium are separated by a stainless steel membrane (encapsulation). Depending on the application paraffin or silicone oil is used as transmission fluid for internal pressure transmission.

Know-how_Pressure-sensors_Piezoresistiv frontbündig_EN.png

Silicon semiconductor sensor, front-flush (piezo-resistive pressure measurement)

In semiconductor materials, the change in the specific resistance and thus of the signal results from the variable mobility of the electrons in the crystalline structure. This mobility is affected by the mechanical load. The sensitive silicon chip and the process medium are separated by a stainless steel membrane (encapsulation). Depending on the application, paraffin or silicone oil is used as transmission fluid for internal pressure transmission.

Transmitters with piezo-resistive silicon technology stand out due to their high measuring accuracy and long-term stability. Thanks to their fully welded housing, they are durable and can also be used in potentially explosive areas (ATEX).

They are even suitable for small measuring ranges, particularly for hydrostatic level measurements from a height of 0.5 m.

Know-how_Pressure-sensors_Keramik Monolith_EN.png

Ceramic thick film sensor, monolith (resistive pressure measurement), e.g. CTX/CTL

The base body is made of a ceramic monolith, onto whose membrane the resistors are imprinted on the back. On this side, the ambient air pressure acts as a reference pressure. Therefore only relative pressure measurement is principally possible. Ceramic measuring cells stand out due to their good long-term stability and corrosion resistance. Because ceramic cannot be welded to the process connection, sealing is required for media separation. In ceramic thick-film technology four resistors are interconnected to create a Wheatstone bridge. During pressurization, the resistors are exposed to the highest strain in the middle of the diaphragm and the greatest compression in the edge areas. In ceramic cells, the measuring membrane is simultaneously the separating membrane from the medium. No internal transmission fluid is required.

Know-how_Pressure-sensors_Keramik Hybrid_EN.png

Ceramic thick-film sensor (resistive pressure measurement), e.g. PBSN

The measuring film is located between a thin ceramic membrane disk and a ceramic base body. The required room for the bending of the membrane is created by the specifically generated gap. This created volume can be ventilated or evacuated with ambient pressure, thus enabling relative or absolute pressure measurement. Ceramic measuring cells stand out due to their good long-term stability and corrosion resistance. Because ceramic cannot be welded to the process connection, sealing is required for media separation. In ceramic thick-film technology four resistors are interconnected to create a Wheatstone bridge. During pressurization, the resistors are exposed to the highest strain in the middle of the diaphragm and the greatest compression in the edge areas. In thin-film cells, the measuring membrane is simultaneously the separating membrane from the medium. No internal transmission fluid is required.

Know-how_Pressure-sensors_Metall Dünnfilm_EN.png

Metal thin-film sensor (resistive pressure measurement)

The base body is made of stainless steel. The resistance structure is produced by photolithography. Thin-film measuring cells stand out due to their excellent resistance to pressure peaks and bursting pressure. Even extremely high pressures can be measured – even when exposed to high shock and vibration loads. In metal thin-film technology four resistors are interconnected to create a Wheatstone bridge. During pressurization, the resistors are exposed to the highest strain in the center of the diaphragm while the strongest compression is present in the edge region. In thin-film cells, the measuring membrane is at the same time the separating membrane from the medium. No internal transmission fluid is required. As a rule, thin-film technology is only offered for relative pressure measurement, because creating a vacuum on the back of the membrane requires extensive effort constructionally.


Suitability for gas applications

Teaser_Know-how_Gas_applications-EN_600x600.jpg

Pressure in sterilization processes

Hot steam is used to sterilize devices and equipment. Small elements, such as sensors (PBMH autoclavable), can be sterilized in a suitable chamber (autoclave). In larger installations, hot steam is fed through the system, which is described as “Sterilization in place” (SIP). Accordingly, a sensor must be designed to be robust, although the signal is generally not transmitted during the sterilization process. It must survive the prevailing temperature and pressure for the relevant time span (e.g., 134 °C at more than 3 bar for 30 min). In physical terms, pressure and temperature are coupled directly with each other, which is shown in the saturated steam curve.

Teaser_Know-how_D-Zchn-6571_600x338.jpg
Pressure of saturated steam with respect to temperature

Baumer PBMx and PFMx pressure sensors are ideal for controlling the sterilization process. They provide accurate values even in the event of fast changes in temperature, and thus control the process reliably by monitoring pressure, which leads to the corresponding temperature.

Teaser_Know-how_E-Zchn-6563_600x338.jpg
Definition of the pressure ranges

Explanation of terminology and relationships

Teaser_Know-how_E-Zchn-6572_600x338.jpg
  • Precision: This describes the possible deviation of a single measurement from the average of many measurements and can be interpreted as a dispersion circle. High precision: small dispersion circle, low precision: large dispersion circle.
  • Accuracy: This describes the distance (offset) of the average value of many measurements from the true value. High accuracy: small offset, low accuracy: large offset.
  • Standard error of measurement: This information is obtained through the best fit straight line, BFSL, and describes precision (dispersion circle).
  • Maximum error of measurement: This contains the standard error of measurement and the offset of a sensor.

Temperature dependence

The application may deviate from the reference temperature (e.g. 20 °C), so that the standard or the maximum error of measurement must be regarded in a differentiated manner.

Temperature dependence of the maximum error of measurement
Teaser_Know-how_E-Zchn-6573_600x338.jpg

In many cases, a temperature-stable sensor with lower initial accuracy is to be preferred to a more unstable sensor with higher initial accuracy if the operating temperature deviates from the reference temperature (e.g. 20 °C).

Error indication

Baumer specifies the “maximum error indication”, i. e. statistically, 99.7% of the sensors comply with the specification. Some competitors enter the “typical error indication”, in which 32% of the products do not comply with the specification.

Teaser_Know-how_E-Zchn-6574_600x338.jpg

Unit Conversions

Teaser_Know-how_UnitConversion_EN-Pressure_600x338.jpg

You may also be interested in

To the top