

Manual Absolute Encoder with *DeviceNet*

Firmware version from 1.01

Baumer Germany GmbH & Co. KG Bodenseeallee 7 DE-78333 Stockach www.baumer.com

Content

		Page
1	Introduction	4
1.1	Scope of delivery	4
1.2	Product assignment	4
2	Safety and operating instructions	5
3	Operating mode of the encoder	6
3.1	Poll Mode	6
3.2	Change of state Mode (COS)	6
3.3	Cyclic Mode	6
4	Encoder operating parameters	6
5	Object model	7
6	I/O assembly instances	8
7	Configuration of the encoder	9
8	Encoder position object	10
9	Terminal assignment and commissioning	13
9.1	Electrical connection	13
9.1.1	Setting the user address	13
9.1.2	Setting the baud rate	13
9.1.3	Terminating resistor	13
9.1.4	Bus cover connection	14
9.2	Display elements (status display)	15

Disclaimer of liability

The present manual was compiled with utmost care, errors and omissions reserved. For this reason Baumer Germany GmbH & Co. KG rejects any liability for the information compiled in the present manual. Baumer Germany GmbH & Co. KG nor the author will accept any liability for direct or indirect damages resulting from the use of the present information.

At any time we should be pleased receiving your comments and proposals for further improvement of the present document.

1 Introduction

1.1 Scope of delivery

Please check the delivery upon completeness prior to commissioning.

Depending on encoder configuration and part number delivery is including:

- Basic encoder with DeviceNet bus cover
- EDS files and manual available as download in the internet at https://www.baumer.com/goto/qpMPe

1.2 **Product assignment**

Shaft encoders

Produkt	Produkt- Code	Eds-Datei	Produktfamilie
AMG 11 D13	0x0B	AMG11D13.eds	AMG 11 - Singleturn
AMG 11 D29	0x0A	AMG11D29.eds	AMG 11 - Multiturn
AMG 81 D13	0x0B	AMG81D13.eds	AMG 81 - Singleturn
AMG 81 D29	0x0A	AMG81D29.eds	AMG 81 - Multiturn
PMG10#-###.###DN.3000#.#	0x0B	PMG10D13.eds	PMG 10 - Singleturn
PMG10#-###.###DN.3600#.#	0x0A	PMG10D29.eds	PMG 10 - Multiturn

Hollow shaft encoders

Produkt	Produkt- Code	Eds-Datei	Produktfamilie
HMG 11 D13	0x0B	HMG11D13.eds	HMG 11 - Singleturn
HMG 11 D29	0x0A	HMG11D29.eds	HMG 11 - Multiturn
HMG10#-###.###DN.3000#.#	0x0B	HMG10D13.eds	HMG 10 - Singleturn
HMG10#-###.###DN.3600#.#	0x0A	HMG10D29.eds	HMG 10 - Multiturn

Supplementary information

Baumer

- This manual is intended as a supplement to already existing documentation (catalogues, data sheets and assembly instructions). They can be downloaded at <u>https://www.baumer.com/goto/qpMPe</u>.
- The manual must be read without fail before initial commissioning of the equipment.

Intended purpose of the equipment

• The encoder is a precision measurement device. It is used to determine angular positions and revolutions, and to prepare and supply measured values in the form of electrical output signals for the follow-on device systems. The encoder may only be used for this purpose.

Commissioning

- The encoder may only be installed and assembled by suitably qualified experts.
- Observe the operating instructions of the machine manufacturer.

Safety remarks

- Prior to commissioning the equipment, check all electrical connections.
- If installation, electrical connection or any other work performed at the encoder or at the equipment is not correctly executed, this can result in a malfunction or failure of the encoder.
- Steps must be taken to exclude any risk of personal injury, damage to the plant or to the operating equipment as a result of encoder failure or malfunction by providing suitable safety precautions.
- Encoders must not be operated outside the specified limited values (see detailed product documentation).

Failure to comply with the safety remarks can result in malfunctions, personal injury or damage to property.

Transport and storage

- Only ever transport or store encoders in their original packaging.
- Never drop encoders or expose them to major vibrations.

Assembly

- Avoid impacts or shocks on the housing and shaft.
- Avoid any twist or torsion on the housing.
- Do not open the encoder or make any mechanical changes to it.

The shaft, ball bearings, glass pane or electronic components can be damaged. In this case, safe and reliable operation cannot be guaranteed.

Electrical commissioning

- Do not make any electrical changes at the encoder.
- Do not carry out any wiring work when the encoder is live.
- Never plug or unplug the electrical connection when the encoder is live.
- Ensure that the entire plant is installed in line with EMC requirements. The installation environment and wiring affect the electromagnetic compatibility of the encoder. Install the encoder and supply cables separately or at a long distance from cables with high interference emissions (frequency converters, contactors etc.)
- Where working with consumers which have high interference emissions, make available a separate power supply for the encoder.
- Connect the encoder to the protective earth (PE) conductor
- Use shielded cable. Ideally, aim a single side connection to protective earth (PE) at the plc side.
- The braided screen, the shield film and the drain wire of the cable must not touch the housing.

Failure to observe these instructions can result in malfunctions, material damage or personal injury.

Disposal

• Dispose of encoder components in accordance with locally applicable legislation.

3 Operating mode of the encoder

3.1 Poll Mode

In the Poll mode, the encoder transmits at the request of a different user. The transmitted data can be either position data or additionally to the position data, also contain a warning flag and an alarm flag.

3.2 Change of state Mode (COS)

The encoder transmits position data without a request from a different user, when the current process actual value has changed by a certain amount (adjustable COS delta).

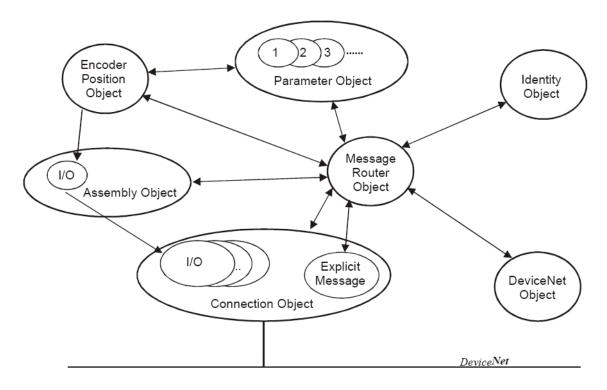
3.3 Cyclic Mode

The encoder transmits position data without a request from a different user after expiry of a programmed time interval (adjustable between 1 and 65535 ms)

4 Encoder operating parameters

Description of operating parameters

Parameter	Description	Value range			Default value	Product
		decimal	hex	Bit	(decimal)	
Sense of rotation	Behaviour of the output code depending on the sense of rotation of the shaft seen looking at the flange CW = Increasing values with clockwise rotation CCW = Increasing values with counterclockwise rotation	CW = 0 CCW = 1	CW = 0h CCW = 1h		CW = 0	All
Resolution	Number of steps per revolution, input in integral steps	18192	12000h	113	8192	All
Measurement range (overall resolution) *	Total resolution = number of steps per revolution x number of revolutions.	1536870912	120000000h	129	536870912	All
Preset value	A certain output value is assigned to the current position value	0 set overall resolution -1			0	All


* In the case of singleturn encoders, the measurement range = the resolution

5 Object model

The object model describes the object classes used by the encoder. The encoder feature a predefined master slave connection set. It is a group 2 only server. The table below indicates the object classes and the number of entities available in each class.

Object class	No. of instances
01h: Identity	1
02h: Message Router	1
03h: DeviceNet	1
05h: Connection	1 explicit, 2 I/O
04h: Assembly	2
0Fh: Parameter	19
2Bh: Acknowledge Handler	1
2Fh: Encoder Position	1

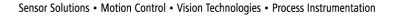
The diagram indicates the relationship between the individual object classes

6 I/O assembly instances

Baumer

The encoder supports 2 I/O assembly instances. The instance is determined by instance attribute 14 (produced_connection_path) of the connection object. The programmed value is automatically saved in the non-volatile memory ("Save" service not necessary here). The default value is instance 1.

The encoder supplies the following data. From the viewpoint of the master, this is input data.


Instance	Туре	Name
1	Input	Position value
2	Input	Position value & Warning flag & Alarm flag

Format of I/O assembly data attributes

The I/O assembly data attributes have the following format:

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	0				Posit	ion value	LSB		
	1				Po	sition valu	ie		
	2				Po	sition valu	ie		
	3				Positi	on value l	MSB		
2	0	Position value LSB							
	1	Position value							
	2	Position value							
	3	Position value MSB							
	4			Rese	erved			Warning flag	Alarm flag

Examples: Path for instance 1 (in hex): "20 04 24 01" Path for instance 2 (in hex): "20 04 24 02"

7 Configuration of the encoder

The encoder-specific parameters can be programmed using the parameter object 0Fh. Each instance of the relevant object refers to a certain attribute of the encoder position object. Changed parameters are initially saved in the non-volatile memory by the "Save" service.

Instances of the parameter object

Baumer

The table below shows the instances of parameter object OFh which are supported by the encoder.

Instance no.	Name	Reference to attribute no. of the encoder position object 2Fhex
1	Sense of rotation	3
2	Internal diagnostic function (not used)	4
3	Scaling function	5
4	Position format	6
5	Steps per turn	7
6	Total resolution in steps	8
7	Measurement steps (not used)	9
8	Preset value	10
9	Position value	12
10	Operating status	80
11	Singleturn resolution	81
12	Number of revolutions	82
13	Alarm flag	85
14	Alarm signals	83
15	Supported alarm signals	84
16	Warning flag	88
17	Warning messages	86
18	Supported warning messages	87
19	Profile / software version	89

General services

The parameter object supports the following services:

Code	Service	Description
0Eh	Get_Attribute_Single	Supplies the content of a selected attribute
10h	Set_Attribute_Single	Changes the value of a selected attribute. The new value is not yet (!) stored in the non-volatile memory.
05h	Reset	Resets all parameters to the default values.
15h	Restore	Reloads all parameters from the non-volatile memory.
16h	Save	Saves all parameters in the non-volatile memory so that they are applicable again after power off/on.

8 Encoder position object

The encoder position object is a manufacturer-specific object. The class code is 2Fh.

Instance attributes

Due to their differing functionality, the instance attributes are subdivided into two groups. The first group, attribute I to 12, contains the parameters for position calculation. The second group, attribute 80 to 95, contains the diagnostic functions. Changed parameters are only saved in the non-volatile memory by the "save" service.

Attribute ID Access Name Description Values Data type No. of attributes USINT Number of supported attributes 1 read 2 Attributes List of supported attributes read Array of USINT 3 Sense of rotation read/ BOOL Setting the sense of rotation 0 = CWwrite 1 = CCWInternal diagnostic BOOL 4 read Not used 0 = OFFfunction 5 Scaling function BOOL Activation of the scaling 1 = ONread function 6 read Position format USINT Format of the position value 0 =Steps Number of required steps per 7 read/ Steps per turn UDINT See op. write turn parameters 8 UDINT Number of required steps over read/ Total resolution See write the measurement range operating parameters UDINT 9 Reserved Reserved = 0 read Preset value 10 UDINT The position value is set to the See op. read/ write preset value parameters 11 COS delta DINT Minimal position change value 1 to overall read/ in the COS mode write resolution 12 Position value DINT Current position value read 1 to overall resolution

Table: Parameters for position calculation

Steps per turn

The parameter "Steps per turn" defines the number of steps per revolution. If this parameter is set, the overall resolution is changed according to the following formula:

Total resolution = Steps per turn x turns

Sense of rotation

The sense of rotation defines whether the position values of the encoder increase when rotation takes place clockwise (CW) or counter clockwise (CCW) when looking at the shaft.

Total resolution in steps

The parameter "Total resolution in steps" defines the total number of steps over the entire measurement range.

Example: Steps per turn = 3600; Turns = 256; \rightarrow Total resolution = $3600 \times 256 = 921600$

If the number of turns is programmed as a value not equal to 2^n (1, 2, 4,...65536), parameterizing will have to be done anew as soon as the encoder's zero point has been exceeded in powerless state.

Preset function

The preset function supports adjustment of the encoder zero to the system's mechanical zero. It sets the current position of the encoder to the preset value. The internal offset is calculated and stored in the encoder. The "Save" service must be used for fixed storage in the non-volatile memory. Note: The preset function should only be used when the encoder is at a standstill.

Table of diagnostic functions:

Attri- bute ID	Access	Name	Data type	Description	Values
80	read	Operating status	USINT	Encoder diagnosis, contains the operating status	Bit 00 = Sense of rot. CW1 = Sense of rot. CCWBit 10 = Diagnosis not supp.1 = Diagnosis supportedBit 20 = Scaling OFF1 = Scaling ON
81	Read	Singleturn resolution	UDINT	Internal resolution per turn	See operating parameters
82	Read	No. of revolutions	UINT	Internal number of revolutions	See operating parameters
83	Read	Alarm signals	UINT	Error can lead to an incorrect encoder position	$\frac{\text{Bit 0}}{0 = \text{No position error}}$ 1 = Pos. error
84	Read	Supported alarm signals	UINT	Information about supported alarm signals	Bit 0 0 = Pos. error not supported 1 = Pos. error supported
85	Read	Alarm flag	BOOL	Indicates the occurrence of an alarm signal (depends on attr. 83)	0 = OK 1 = Alarm
86	Read	Warning messages	UINT	Internal parameters out of tolerance	$\frac{\text{Bit 4}}{\text{Voltage of the lithium cell}}$ $0 = OK$ $1 = \text{too low}$
87	Read	Supported warning messages	UINT	Information on supported warning messages	Bit 4 Voltage warning signal for lithium cell 0 = not supported 1 = supported
88	Read	Warning flag	BOOL	Indicates the occurrence of a warning signal (depends on attr. 86)	0 = OK 1 = Warning signal
89	Read	Profile and software version	UDINT	Low-Word: Profile High-Word: Software version	
91	Read	Offset value	DINT	The offset value is calculated within the preset function and shifts the position value by the calculated value	
95	Read	Encoder type	UINT	Describes the encoder type	

Parameter description

Alarm signals

Attribute 83 supplies the alarm signals. An alarm is set when the encoder has recognized a status which can lead to an incorrect encoder position. As soon as an alarm status is detected, the relevant bit is set to logic high. The alarm is reset automatically after 2.5 seconds. The alarm flag bit (attr. 85) is also set with each alarm.

Warning messages

Warnings are signalled by the encoder when internal encoder parameters are out of tolerance. In contrast to alarm signals, warnings do not indicate an incorrect position. Warnings are reset as soon as the parameter which was out of tolerance resumes a correct value. The warning flag bit (attr. 88) is also set with each warning.

Offset value

Attribute 91 contains the parameter offset value. The offset value is calculated within the preset function and shifts the position value by the calculated value. The preset function is used after the scaling function. The offset value is not saved in the non-volatile memory until the "Save" service is activated.

Encoder type

Encoder type = 01: Absolute encoder, singleturn Encoder type = 02: Absolute encoder, multiturn

General services

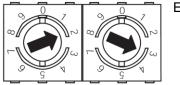
The encoder position object supports the following services:

Code	Service	Description
0Eh	Get_Attribute_Single	Supplies the content of a selected attribute
10h	Set_Attribute_Single	Changes the value of a selected attribute. The new value is not yet (!) saved in the non-volatile memory
05h	Reset	Resets all parameters to the default values
15h	Restore	Reloads the parameters from the non-volatile memory
16h	Save	Saves all parameters in the non-volatile memory, so that they are valid again after power off/on

9 Terminal assignment and commissioning

9.1 Electrical connection

Baumer


The bus cover must rest fully against the housing and be firmly screwed in place. For electrical connection, pull off the bus cover using the following method:

- Release the fastening screws of the bus cover
- Carefully loosen the bus cover and lift off in the axial direction

9.1.1 Setting the user address

The user address (MAC ID) is set decimally using two rotary switches in the bus cover. The maximum number of users is 63.

Set the user address decimally using the two rotary switches 1 and 2.

Example: 23

9.1.2 Setting the baud rate

The baud rate setting is binary, using switches 2 and 3 of the 3-pin DIP switch in the bus cover. The default value is 125 KBit/s.

Baud rate	Setting of the 3 DIP switches				
	Switch 1 Switch 2 Switch 3				
125 kBit/s	Х	OFF	OFF		
250 kBit/s	Х	OFF	ON		
500 kBit/s	Х	ON	OFF		
125 kBit/s *	Х	ON	ON		

X = don`t care

* As this switch setting is not defined, it is set internally to the default value 125 kbit/s.

9.1.3 Terminating resistor

If the connected encoder is the last device in the bus line, the bus must be terminated with a resistor. The resistor is in the bus cover and is connected using a DIP switch.

• The terminating resistor must be switched to "ON" at the last user with a DIP switch (default setting OFF).

ON = Final user OFF = User X

9.1.4 Bus cover connection

- Release the cap nut of the cable gland.
- Push the cap nut and seal insert with contact sleeve onto the cable sheath.
- Strip the cable sheath and cores, completely remove the braided screen and shield film to the end of the cable sheath.
- The braided screen and shield film of the cable must not touch the housing.
- Push the sealing insert with contact sleeve along as far as the braided shield. Insert the sealing insert with contact sleeve and cable flush into the cable gland and tighten the cap nut.
- Insert the cores and the drain wire into the terminal strip and screw tight, observing the admissible core cross-section
- Use isolated core end sleeves. Use preferably isolated twin core end sleeves for supply voltage.

- Insert the drain wire into the drain terminal. The drain wire of the cable must not touch the housing.
- Terminals with the same designation are internally interconnected.
- For the power supply cable, gland 1 or 2 can be optionally used note admissible cable cross-sections.
- Guide cores along the shortest route from the cable gland to the terminal strip.
- Close unused cable glands with sealing bolts (supplied).

Assembly of basic encoder and bus cover:

- Carefully plug the bus cover onto the D-SUB plug of the basic encoder, then press only via the sealing rubber, taking care not to tilt it. The bus cover must rest fully against the basic encoder.
- Tighten both the fastening screws firmly in the same direction.

The encoder housing and bus cover are only ideally connected if the bus cover is resting fully on the basic encoder (positive locking).

9.2 Display elements (status display)

A DUO LED (green/red) is located in the bus cover which works in accordance with DeviceNet specification in the combined module/network status and supplies information about the status of the encoder and the network.

LED status	Status	Description
Off	Not connected	No power supply - Dupl. MAC-ID Check not finished. - Power supply not connected -
Green flashing	Device active and online No connections set up	 The device is working under normal conditions and is online, but no connection has been set up. The encoder has not yet been configured by the master Configuration not complete or faulty -
Green	Device active and online Connections are set up	The device is working under normal conditions and is online, connections in "set up" status"
Red	Critical device error critical communication error	The device is an irreparable error status - No network communication possible - User address has been assigned twice (MAC-ID) -
Red flashing	Repairable error	I/O connections are in time-out status