

Applications with Universal Robots and VeriSens® with different heights
as well as relative object positions

AN202005/v0.2/2023-08-21

Description

Solutions for applications with Universal Robots (UR) and VeriSens® with different heights as well as relative

object positions

Products

VeriSens® XF900 and XC900 series

Content

1 Technical background ... 2

2 Option 1 – simply create several jobs ... 2

2.1 Applications ... 2

2.2 Advantages and disadvantages of the option ... 3

2.3 Installation and calibration ... 3

2.4 Image processing job and robot program.. 3

3 Option 2 – Movement affected by the robot program .. 4

3.1 Applications ... 4

3.2 Advantages and disadvantages of the option ... 4

3.3 Installation and calibration ... 4

3.4 Image processing job and robot program.. 5

3.5 Programming example 1 – winner’s podium ... 6

3.5.1 Description of the application .. 6

3.5.2 Creating the variables.. 6

3.5.3 Creating the program ... 7

3.6 Programming example 2 – four screws depending on a variable position.. 10

3.6.1 Description of the application .. 10

3.6.2 Creating the variables.. 11

3.6.3 Creating the program ... 12

4 Summary / special cases .. 17

5 Downloads .. 17

6 Support ... 17

7 Legal information ... 17

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 2/19 Radeberg, Germany

1 Technical background

Image processing with VeriSens® is based on 2D images. Robotics operate in the 3D realm. The effect of the

third dimension on the 2D scaling is already taught in during the calibration process via SmartGrid when

VeriSens® / UR is integrated. During the subsequent setup, this makes it considerably easier to handle the

different “Z” values such as object height, grabbing height, or work surface height, as all values can operate

with a “reference level.”

The height of an object is measured and stored in the image processing job. This enables VeriSens® to

convey to the robot not only the x, y, and rotZ that were determined by the 2D image processing but also

the value z of the object surface that is “seen”.

Note

To put it simply, rotX and rotY are zero, accordingly are all 3D coordinates covered.

This leads to the justified question of whether VeriSens® and UR can also be used to handle objects with

different heights in an application.

Imagine a winner’s podium (Figure 1).

Figure 1: Winner’s podium

You want to use image processing to measure from above whether the platforms have the correct
dimensions.

Problem: Capturing an image from an overhead camera position makes the captured platforms appear
differently sized due to their varying distances from the capturing device.

How can such applications be resolved?

2 Option 1 – simply create several jobs

2.1 Applications

An object with varying heights is to be inspected or measured with limited effort. All heights are in the depth

of field area of the VeriSens® in its calibrated capturing position.

Using the example of our winner’s podium, it must therefore be possible for all 3 steps to be in the depth of

field area. With the VeriSens® XC series, the depth of field can be influenced by the choice of the respective

lens.

VeriSens® is mounted dynamically according to the technical documentation – i.e. carried along.

Alternatively, it can also be mounted statically, i.e., above the robot.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 3/19 Radeberg, Germany

2.2 Advantages and disadvantages of the option

Advantages:

• Very easy to comprehend and implement

• Can be implemented with both mounting options

Disadvantages:

• Object heights must be located in a common depth of field area

• Specific object heights must be known when creating the program

2.3 Installation and calibration

The application is calibrated via SmartGrid. The focus must not be shifted anymore. The image capturing

position is stored via VeriSens® URCap in step 2.

Note

Please make sure that when the distance between the SmartGrid and the reference level is entered in

both the VeriSens® Application Suite and VeriSens® URCap, the additional distance between the

SmartGrid bottom side and reference level is added to the SmartGrid material thickness if the SmartGrid is

not directly placed on the reference level.

After the automatic alignment of the coordinates is completed in installation step 3 of the VeriSens® URCap,

the application can be created.

2.4 Image processing job and robot program

For each height to be inspected – in our case the three heights of the platforms – a VeriSens® job must be

created or adapted (“Platform_1”, “Platform_2”, etc.).

For this purpose, the respective object height (height of the step to the reference level) must be saved in

every job under Coordinates/Z-correction.

As VeriSens® is familiar with the overall system from the calibration, it is capable of correspondingly scaling

objects that appear to have different sizes due to their heights for each job correctly in x and y and thus

verifying the correct dimensions.

How can the robot be additionally moved to the different heights, e.g., to assemble the winner’s podium from

the individual steps using the robot (Figure 2)?

Figure 2: Individual steps of a winner’s podium

Very simply, the movement of the robot is based on the coordinates of the respective upstream “VeriSens®

Job Execution” in the robot’s program using the individual VeriSens® job for each level. This provides the

coordinates to the subsequent “VeriSens® Waypoint & Move”, including z of the object height. At this node,

an additional, corresponding Z offset can be freely selected each time, allowing the grabber, e.g., to move to

a position underneath the surface of the step.

If the individual steps are provided randomly, the selection of the associated job could take place based on

the results of a distance sensor (measurement of the step height), for example.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 4/19 Radeberg, Germany

3 Option 2 – Movement affected by the robot program

3.1 Applications

- A screwdriver guided by a robot arm is to move to four screws in the corners of an object, depending

on a position determined by VeriSens®.

- A distance sensor moving along with the UR provides the distance to the object, allowing the

inspection to take place based on the height and thus flexibly.

- For application reasons, the robot program itself is to introduce an additional offset to the image-

based coordinates provided by VeriSens® for the waypoint.

- With option 2, the robot in our example of a winner's podium moves to each step of the podium

individually to allow measurement with a constant distance to VeriSens®.

Only dynamic mounting of the VeriSens®,, i.e., moving along with the robot, is possible.

3.2 Advantages and disadvantages of the option

Advantages:

• Different object heights do not have to be in the same depth of field area

• A distance sensor can be used for the automatic determination of the object height

• Positions depending on the heights z or x, y, rotZ can be approached

Disadvantages:

• More complex than option 1

• Limited to dynamic mounting with its advantages and disadvantages (see the documentation)

3.3 Installation and calibration

In our example of a winner’s podium, the height of precisely one platform is measured in relation to the

reference level and permanently defined in the robot program. This offers the advantage that only one image

processing job is required and the work is also done independently of the depth of field area of VeriSens®.

The addition to or deduction from coordinate z required for steps of different heights is specified by the robot

program itself.

The system is calibrated in VeriSens® URCap based on the top step of our winner’s podium, to which the

SmartGrid is applied. In this captured image, the robot position is stored under step 2 as standard. The

coordinates are now calibrated in step 3; the focus of the VeriSens® should now no longer be shifted.

Figure 3: SmartGrid on the surface of the highest step

Note

Please make sure that when the distance between the SmartGrid and the reference level is entered, the

additional distance between the SmartGrid bottom side and the reference level is added to the SmartGrid

material thickness in both VeriSens® Application Suite as well as in VeriSens® URCap, as the SmartGrid is

not directly placed on the reference level. The distance between the SmartGrid and the reference level

therefore consists of the sum of the SmartGrid material thickness and the height of the step.

We have chosen the top step for the calibration to avoid conflicts with the maximum height during the

subsequent process.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 5/19 Radeberg, Germany

3.4 Image processing job and robot program

In our example of grabbing individual steps of the winner’s podium, an offset z is required for each individual

step 1, 2, and 3.

The applicative trick now consists of the robot program itself or even a distance sensor setting this additional

offset z to specified waypoint coordinates or image-based coordinates by incorporating both coordinates in

the robot program calculations.

Specifically, offset z is used twice in the robot program:

• 1st height adjustment: waypoint before “VeriSens® Job Execution”

• 2nd height adjustment: waypoint after “VeriSens® Waypoint & Move”

Figure 4: Individual steps of the winner’s podium

1st height adjustment

The same “VeriSens® Job Execution” takes place for every platform. However, before the job is executed via

the program-based movement of the robot, a fixed working distance between the top of the step and

VeriSens® is determined for each of the three steps so that the displayed platform always has same size in

the image and can be correctly measured.

2nd height adjustment

The coordinate z provided by VeriSens® or saved in the image processing job (under Coordinates / Z

correction) is always the same. The stated value is the height of step 1 (top side) in relation to the reference

level, as we have created one job for this.

This is why a script-based calculation is required in the robot, as both sensors or values are only combined
in the robot, or an additional, fixed offset value is only added to the image-based waypoint there.

For this purpose, the script must first acquire the coordinates of the approached image-based waypoint for
further calculation, which takes place by moving to a position with a fixed offset from the node “VeriSens®

Waypoint & Move”.

The waypoint to be approached for the grabbing task of the UR is then calculated from these stored

coordinates and the above-mentioned additional value for the height adjustment of the respective step.

For grabbing tasks, which typically require a position underneath the surface of the object, an object-based

offset from the robot program continues to be used.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 6/19 Radeberg, Germany

3.5 Programming example 1 – winner’s podium

3.5.1 Description of the application

We now look at the winner’s podium (Figure 1) and show how the different object heights z are handled: the

robot program itself maintains the distance between VeriSens® and the object surface that is specified in the

image processing job.

3.5.2 Creating the variables

The following variables are used by the program and must therefore be created in advance (Figure 5).
The initially determined values are adjusted while the program is running.

offs_exec_z

Vertical shift of the image capturing position in relation to the height during the coordinate calibration
(installation).

offs_move_z

Vertical shift that was set manually in the VeriSens® waypoint.

pos_WP

Calculated position of a waypoint that is to be approached in the program.
Syntax: p[x, y, z, rotX, rotY, rotZ]

Figure 5: UR controls, Installation mode for variables

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 7/19 Radeberg, Germany

3.5.3 Creating the program

Robot programming can now commence (Figure 6).

Figure 6: UR controls, programming

Program description

Line Explanation

4 → Basic → Waypoint

Move to a waypoint that either corresponds to the pose of the vision sensor during installation or
a pose with the same height z only as during the installation.

6 → Advanced → Assignment

Set the variable offs_exec_z to a z offset by which the job execution pose is to be shifted.

Example: The current inspection level is 100 mm lower than the pose during calibration
(neg. z direction) => -0.1 meter

Alternatively, the result of an external distance sensor can also be used here.

8 → Advanced → Assignment

1st height adjustment: Set variable pos_WP to a calculated value. This is calculated with

pose_add() as the sum of the following two values:

• p[0, 0, offs_exec_z, 0, 0, 0] … a relative shift created in the Z direction

• get_actual_tcp_pose() … the current position of the robot

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 8/19 Radeberg, Germany

Note:

• For use in a formula, a pose can be created with the following syntax: p[x, y, z,

rotX, rotY, rotZ]. In this formula x, y, z indicate the coordinates (e.g. metric in

“meters”) and rotX, rotY, rotZ the rotation values of the TCP (in radians).

• In this example, the last three components (rotation values) remain unaffected in the
case of calculated poses.

Note

Depending on the application, we generally recommend only altering rotZ to

prevent unintended side effects; VeriSens® also only provides this value.

• pos_WP serves as a temporarily used variable for storing a position

Figure 7

10 → Basic → Waypoint

Move to the waypoint whose position corresponds to the value of the variable pos_WP.

Figure 8

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 9/19 Radeberg, Germany

12 → URCap → VeriSens(R) Job Execution

Execute the selected job on VeriSens®.

Note

In this example, VeriSens® is located 100 mm lower than normal. VeriSens® is not informed of

this changed image capturing position and continues to provide the Z height set in the job in

the Application Suite as the Z coordinate.

13 → Advanced → If

Execute the following subprogram only if at least one object has been found.

15 → URCap → VeriSens(R) Waypoint & Move

Move to the object position provided by VeriSens®, which is manually adjusted in the Z direction
to prevent collisions.

Figure 9
In the example, this manual adjustment is 200 mm. This means that the robot moves 200 mm
above the Z position specified in the job in the Application Suite. The value of this height
adjustment must be selected so that the robot moves to a position above the object in all
instances.

Especially when offs_exec_z is > 0, this manual adjustment should be a little larger than the

value of offs_exec_z.

17 → Advanced → Assignment

Set the variable offs_move_z to the same value which was previously manually set as the

offset in the “VeriSens® Waypoint & Move” node (line 13) (in this example 0.2 m).

19 → Advanced → Assignment

2nd height adjustment: Set variable pos_WP to a calculated value. This is calculated with

pose_add() as the sum of the following two values:

- p[0, 0, offs_exec_z - offs_move_z - 0.05, 0, 0, 0] … a relative shift

created in the Z direction, which is composed of three Z components:
o offs_exec_z … takes into account the vertical shift during the job execution

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 10/19 Radeberg, Germany

o offs_move_z … compensates the vertical shift of the approached waypoint

above the object
o -0.05 … manual adjustment:

e.g. for a lower grabbing position (in this example shifted by 50 mm in the neg. Z
direction)

- get_actual_tcp_pose() … the current position of the robot

21 → Basic → Waypoint

Move to the waypoint whose position corresponds to the value of the variable pos_WP.

3.6 Programming example 2 – four screws depending on a variable position

3.6.1 Description of the application

In the second example (Figure 10), four screws are to be tightened in fixed positions from the center based

on the position detected in the middle by VeriSens®, using an electric screwdriver guided by a robot. In the

captured image, Z is equivalent to the nominal height of the coordinate calibration. To “get” the position, the

robot moves to a higher z. An adjustment is then made in z as well as x and y for the tightening position in

each corner.

Figure 10

80 mm

6
0
 m

m

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 11/19 Radeberg, Germany

3.6.2 Creating the variables

The following variables are used by the program and must therefore be created in advance.
The initially determined values are adjusted while the program is running.

offs_corner_x

X offset of the tightening position of a corner in relation to the center of the object

offs_corner_y

Y offset of the tightening position of a corner in relation to the center of the object

offs_move_z

Vertical shift that is set manually in the VeriSens® waypoint

pos_WP

Calculated position of a waypoint that is to be approached in the program.
Syntax: p[x, y, z, rotX, rotY, rotZ]

Figure 11

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 12/19 Radeberg, Germany

3.6.3 Creating the program

Robot programming can now commence (Figure 11).

Figure 12

Program description

Line Explanation

4 → Basic → Waypoint

Move to a waypoint that either corresponds to the pose of the vision sensor during installation or
a pose with the same height z only as during the installation.

6 → URCap → VeriSens(R) Job Execution

Execute the selected job on VeriSens®.

7 → Advanced → If

Execute the following subprogram only if one object has been found.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 13/19 Radeberg, Germany

8 → Advanced → Assignment

Set the variable offs_corner_x to a fixed value.

Example: VeriSens® provides the center of the object as the object position. The value
offs_corner_x is set to half the distance between the tightening positions in the X direction,

as a tightening position is found at this distance to the center of the object.

9 → Advanced → Assignment

Set the variable offs_corner_y to a fixed value.

Example: VeriSens® provides the center of the object as the object position. The value
offs_corner_y is set to half the distance between the tightening positions in the Y direction,

as a tightening position is found at this distance to the center of the object.

10 → Advanced → Loop

Introduce a loop to move the robot to the 4 tightening positions in sequence.

Figure 13

12 → URCap → VeriSens(R) Waypoint & Move

Move to the object position provided by VeriSens®, which is manually adjusted in the Z direction
to prevent collisions.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 14/19 Radeberg, Germany

Figure 14

In the example, this manual adjustment is 100 mm. This means that the robot moves 100 mm
above the Z position set in the job in the Application Suite. The value of this height adjustment
must be selected so that the robot moves to a position above the object in all instances.

14 → Advanced → Assignment

Set the variable offs_move_z to the same value that was previously set manually as the offset

in the “VeriSens® Waypoint & Move” node (line 12) (in this example, 0.1 m).

15 → Advanced → SubProg

Execute the “MoveToCorner” subprogram (see from line 22), which will cause the robot to move
to a position above one of the four tightening positions, depending on the loop index.

Figure 15

18 → Advanced → Assignment

Set variable pos_WP to a calculated value. This is calculated with pose_add() as the sum of

the following two values:

• p[0, 0, offs_exec_z - offs_move_z - 0.05, 0, 0, 0] … a relative shift

created in the Z direction, which is composed of two Z components:

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 15/19 Radeberg, Germany

o -offs_move_z … compensates the vertical shift of the approached waypoint

above the object
o -0.05 … manual adjustment:

e.g. for a lower tightening position (in this example, shifted by 50 mm in the neg.
Z direction)

• get_actual_tcp_pose() … the current position of the robot

19 → Basic → Waypoint

Move to the waypoint whose position corresponds to the value of the variable pos_WP.

Note

The tightening process could take place now.

20 → Advanced → Assignment

Set variable pos_WP to a calculated value. This reverses the vertical position change from line

18.

21 → Basic → Waypoint

Move to the waypoint whose position corresponds to the value of the variable pos_WP.

Note

Now the robot is at a distance above the object again.

22 Start of the description of the “MoveToCorner” subprogram

23 → Advanced → Switch

Addition of 4 cases within a switch command. This way, each tightening position can be treated
separately within a case command.

Figure 16

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 16/19 Radeberg, Germany

24,
26,
28,
30

Automatically inserted case command within which additional nodes can be added.

Figure 17

25,
27,
29,
31

→ Advanced → Assignment

Set variable pos_WP to a calculated value. This is calculated with pose_add() as the sum of

the following two values:

• p[±offs_corner_x, ±offs_corner_y, 0, 0, 0, 0] … a relative offset created

in the X and Y direction, to subsequently (line 33) move the robot correctly over a
tightening position each time.

• get_actual_tcp_pose() … the current position of the robot

33 → Basic → Waypoint

Move to the waypoint whose position corresponds to the value of the variable pos_WP.

Note

The robot is now over a tightening position depending on the respective case. The program
execution continues at the end of this subprogram in line 16.

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 17/19 Radeberg, Germany

4 Summary / special cases

It is possible to inspect or detect the position of objects with different heights and even control subsequent
actions in this way.

The methods vary and depend on the application. While option 1 is distinguished by its simplicity and can be
implemented quickly even by beginners, option 2 offers complete freedom of action to experienced
programmers.

5 Downloads

Additional information can be found in the documentation for VeriSens® Vision sensors, specifically the

section on Universal Robots.

Product Finder

6 Support

Please contact our Technical & Application Support Center with any questions.

Worldwide

Baumer Optronic GmbH

Badstrasse 30 ∙ DE-01454 Radeberg

Deutschland

Phone +49 3528 4386 845

support.cameras@baumer.com

7 Legal information

All product and company names mentioned are trademarks or registered trademarks of their respective

owners.

All rights reserved. Reproduction of this document in whole or in part is only permitted with previous written

consent from Baumer Optronic GmbH.

Revisions in the course of technical progress and errors reserved.

https://www.baumer.com/c/332/products
mailto:support.cameras@baumer.com

Applications with Universal Robots and VeriSens® Baumer Optronic GmbH
21.08.2023 18/19 Radeberg, Germany

Baumer Group

The Baumer Group is one of the worldwide leading manufacturers of sensors, encoders, measuring instruments and components for

automated image processing. Baumer combines innovative technologies and customer-oriented service into intelligent solutions for

factory and process automation and offers an unrivalled wide technology and product portfolio. With around 2,700 employees and

39 subsidiaries in 19 countries, the family-owned group of companies is always close to the customer. Baumer provides clients in most

diverse industries with vital benefits and measurable added value by worldwide consistent high quality standards and outstanding

innovative potential. Learn more at www.baumer.com on the internet.

Baumer Optronic GmbH

Badstrasse 30 ∙ DE-01454 Radeberg

Phone +49 3528 4386 0 ∙ Fax +49 3528 4386 86

sales.cc-vt@baumer.com ∙ www.baumer.com T
e

c
h

n
ic

a
l
m

o
d

if
ic

a
ti
o
n

s
 a

n
d

 e
rr

o
rs

 r
e

s
e
rv

e
d

.

http://www.baumer.com/
http://www.baumer.com/

	1 Technical background
	2 Option 1 – simply create several jobs
	2.1 Applications
	2.2 Advantages and disadvantages of the option
	2.3 Installation and calibration
	2.4 Image processing job and robot program

	3 Option 2 – Movement affected by the robot program
	3.1 Applications
	3.2 Advantages and disadvantages of the option
	3.3 Installation and calibration
	3.4 Image processing job and robot program
	3.5 Programming example 1 – winner’s podium
	3.5.1 Description of the application
	3.5.2 Creating the variables
	3.5.3 Creating the program

	3.6 Programming example 2 – four screws depending on a variable position
	3.6.1 Description of the application
	3.6.2 Creating the variables
	3.6.3 Creating the program

	4 Summary / special cases
	5 Downloads
	6 Support
	7 Legal information

