

Handbuch

Absolute Drehgeber mit EtherNet/IP (mit Bushaube)

Firmware Version ab 1.07

Inhalt	Seite
1. Einleitung	4
1.1. Lieferumfang 1.2. Produktzuordnung	4
2. Sicherheits- und Betriebshinweise	5
3. Geräteprofil 3.1. Einführung	7
3.2. Objekt Model	8
3.3. Identity Objekt – 01hex	9
3.4. Position Sensor Objekt – 23hex	12
3.5. Assembly Objekt – 04hex 3.6. Assembly Instanzen	17 18
3.7. Parameter Objekt – 0Fhex	20
4. EtherNet/IP spezifische Objekte	24
4.1. Einführung	24
4.2. Ethernet Link Objekt – F6hex	25
4.3. TCP/IP Interface Objekt – F5hex	27
5. Inbetriebnahme	31
5.1. Elektrischer Anschluss5.1.1. Verkabelung	31 31
5.1.2. Anschluss Bushaube	31
5.2. Betriebs-Anzeige (mehrfarbige LED)	33
5.3. Activity Anzeige (grüne LEDs)	33
6. IP Adresszuweisung	34
6.1. EtherNet/IP Bushaube mit HEX-Drehschalter: IP-Adress-Zuweisung im I	
6.2. IP Adresse mit BOOTP/DHCP "configuration tool" zuweisen 6.3. RSLinx Classic Lite	35 36
6.4. RSWho	36
7. Gerätekonfiguration	37
7.1. Einführung	37
7.2. Verwendung des Parameter Objektes	37
7.3. Verwendung der Konfigurations Assembly-Instanz 105	40
7.4. Direkte Verwendung des Position Sensor Objektes	42
8. RSLogix5000 Beispiel Projekt	44
8.1. Eingangsdaten einlesen8.1.1. Generic Ethernet Module konfigurieren	44 45
8.2. Explicit Messaging , SPS Beispielprogramm Set Preset	45 47
8.2.1. Program Tags anlegen	47
8.2.2. Controller Tags anlegen	48
8.2.3. Konfiguration der Message Tag	49
9. Verwendete Abkürzungen und Begriffe	50
10. FAQ's	50
10.1. Gerät nicht ansprechbar / IP Adresse unbekannt	50

Haftungsausschluss

Diese Schrift wurde mit großer Sorgfalt zusammengestellt. Fehler lassen sich jedoch nicht immer vollständig ausschließen. Baumer übernimmt daher keine Garantien irgendwelcher Art für die in dieser Schrift zusammengestellten Informationen. In keinem Fall haftet Baumer oder der Autor für irgendwelche direkten oder indirekten Schäden, die aus der Anwendung dieser Informationen folgen.

Wir freuen uns jederzeit über Anregungen, die der Verbesserung dieses Handbuchs dienen können.

Eingetragene Warenzeichen

RSLinx[™], RSNetWorx[™] und RSLogix5000[™] sind eingetragene Warenzeichen der Firma Rockwell Automation. Das EtherNet/IP Logo ist ein eingetragenes Warenzeichen der ODVA, Inc.. Solche und weitere Bezeichnungen, die in diesem Dokument verwendet wurden und zugleich eingetragene Warenzeichen sind, wurden nicht gesondert kenntlich gemacht. Aus dem Fehlen entsprechender Kennzeichnungen kann also nicht geschlossen werden, dass die Bezeichnung ein freier Warenname ist oder ob Patente oder Gebrauchsmusterschutz bestehen.

1. Einleitung

1.1. Lieferumfang

Bitte prüfen Sie vor der Inbetriebnahme die Vollständigkeit der Lieferung. Je nach Ausführung und Bestellung können zum Lieferumfang gehören: Basisgeber mit Bushaube.

Geräte-Beschreibungsdateien und Handbuch sind über das Internet zum Download verfügbar auf www.baumer.com.

1.2. Produktzuordnung

Produkt	E-IP Produkt- Code	EDS-Datei	Beschreibung	Passender Eintrag im Hardware- Katalog
HMG10 / PMG10 Multiturn	30	Baumer_EIP_Encoder_HMG10_PMG10_MT.eds	16 Bit MT + 13 Bit ST	GXMMW
HMG10 / PMG10 Singleturn	31	Baumer_EIP_Encoder_HMG10_PMG10_ST.eds	13 Bit ST	GXAMW

Erläuterung:

MT Multiturn Drehgeber ST Singleturn Drehgeber

16 Bit MT

Max. 16 Bit Anzahl zählbarer Umdrehungen, d.h. 2¹⁶ Umdrehungen Max. 13 Bit physikalische Singleturn-Auflösung, d.h. 2¹³ Schritte / Umdrehung 13 Bit ST

2. Sicherheits- und Betriebshinweise

Bestimmungsgemäßer Gebrauch

- Der Drehgeber ist ein Präzisionsmessgerät, das der Erfassung von Positionen und/oder Geschwindigkeiten dient. Er liefert Messwerte als elektronische Ausgangssignale für das Folgegerät. Er darf nur zu diesem Zweck verwendet werden. Sofern dieses Produkt nicht speziell gekennzeichnet ist, darf es nicht für den Betrieb in explosionsgefährdeter Umgebung eingesetzt werden.
- Eine Gefährdung von Personen, eine Beschädigung der Anlage oder von Betriebseinrichtungen durch den Ausfall oder Fehlfunktion des Drehgebers muss durch geeignete Sicherheitsmaßnahmen ausgeschlossen werden.

Wartung

• Der Drehgeber ist wartungsfrei und darf nicht geöffnet beziehungsweise mechanisch oder elektrisch verändert werden. Ein Öffnen des Drehgebers kann zu Verletzungen führen.

Entsorgung

• Der Drehgeber enthält elektronische Bauelemente. Bei einer Entsorgung müssen die örtlichen Umweltrichtlinien beachtet werden.

Montage

- Schläge oder Schocks auf Gehäuse und Welle / Hohlwelle vermeiden.
- Vollwelle: Keine starre Verbindung von Drehgeberwelle und Antriebswelle vornehmen. Antriebs- und Drehgeberwelle über eine geeignete Kupplung verbinden.
- Hohlwelle: Vor Montage des Drehgebers, Klemmring vollständig öffnen. Fremdkörper sind in ausreichendem Abstand zur Statorkupplung zu halten. Die Statorkupplung darf außer an den Befestigungspunkten des Drehgebers und der Maschine nicht anstehen.
- Gehäuse nicht verspannen.
- Drehgeber nicht öffnen oder mechanisch verändern.

Welle, Kugellager, Glasscheibe oder elektronische Teile können hierdurch beschädigt werden. Die sichere Funktion ist dann nicht mehr gewährleistet.

Inbetriebnahme

- Einbau und Montage des Drehgebers darf ausschließlich durch eine Elektrofachkraft erfolgen.
- Betriebsanleitung des Maschinenherstellers beachten.

Elektrische Inbetriebnahme

- Drehgeber elektrisch nicht verändern.
- Keine Verdrahtungsarbeiten unter Spannung vornehmen
- Den elektrischen Anschluss unter Spannung nicht aufstecken oder entfernen
- Die gesamte Anlage EMV-gerecht installieren. Einbauumgebung und Verkabelung beeinflussen die EMV des Drehgebers. Drehgeber und Zuleitungen r\u00e4umlich getrennt oder in gro\u00dfem Abstand zu Leitungen mit hohem St\u00f6rpegel (Frequenzumrichter, Sch\u00fctze usw.) verlegen.
- Bei Verbrauchern mit hohen Störpegeln separate Spannungsversorgung für den Drehgeber bereitstellen
- Drehgebergehäuse und die Anschlusskabel vollständig schirmen
- Drehgeber an Schutzerde (PE) anschließen. Geschirmte Kabel, auch für die Stromversorgung, verwenden. Schirmgeflecht muss mit der Kabelverschraubung oder Stecker verbunden sein. Anzustreben ist ein beidseitiger Anschluss an Schutzerde (PE), Gehäuse über den mechanischen Anbau, Kabelschirm über die nachfolgenden angeschlossenen Geräte. Bei Problemen mit Erdschleifen mindestens eine einseitige Erdung.

Bei Nichtbeachtung kann es zu Fehlfunktionen, Sach- und Personenschäden kommen!

Zusätzliche Informationen

- Das Handbuch ist eine Ergänzung zu weiteren Dokumentationen (z.B. Katalog, Datenblatt oder Montageanleitung).
- Die Anleitung muss unbedingt vor Inbetriebnahme gelesen werden.

Sicherheitshinweise

- Vor Inbetriebnahme der Anlage alle elektrischen Verbindungen überprüfen.
- Wenn Montage, elektrischer Anschluss oder sonstige Arbeiten am Drehgeber und an der Anlage nicht fachgerecht ausgeführt werden, kann es zu Fehlfunktion oder Ausfall des Drehgebers führen.
- Eine Gefährdung von Personen, eine Beschädigung der Anlage und eine Beschädigung von Betriebseinrichtungen durch den Ausfall oder Fehlfunktion des Drehgebers muss durch geeignete Sicherheitsmaßnahmen ausgeschlossen werden.
- Drehgeber darf nicht außerhalb der Grenzwerte betrieben werden (siehe weitere Dokumentationen).

Bei Nichtbeachtung der Sicherheitshinweise kann es zu Fehlfunktionen, Sach- und Personenschäden kommen!

Transport und Lagerung

- Transport und Lagerung ausschließlich in Originalverpackung.
- Drehgeber nicht fallen lassen oder größeren Erschütterungen aussetzen.

3. Geräteprofil

3.1. Einführung

EtherNet/IP nutzt als Applikationsschicht das Common Industrial Protokoll (CIP), welches durch die ODVA offen gelegt wurde. Das CIP-Protokoll wird als "gekapseltes" Protokoll im Datenteil von Standard-Ethernet Frames übertragen. Je nach Aufgabe und Verbindungsart werden die Datenübertragungsmechanismen UDP/IP oder TCP/IP genutzt.

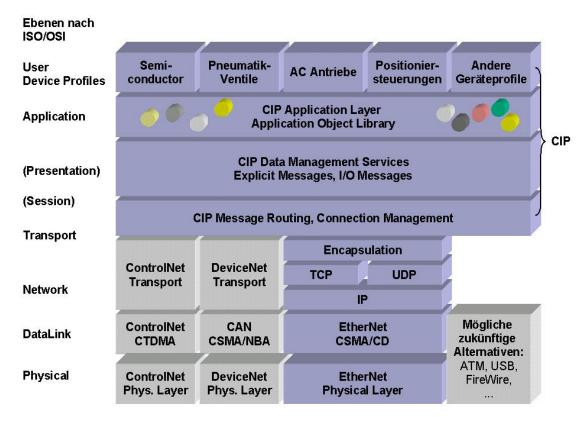


Bild 1: EtherNet/IP und CIP - Ebenen nach OSI Referenzmodell

CIP ist ein objektorientiertes Protokoll. Die Geräteeigenschaften werden durch Objekte (z.B. Parameterobjekt), welche 1 oder mehrere Instanzen besitzen, beschrieben. Jede Instanz besitzt wiederum 1 oder mehrere Attribute. Attribute beschreiben einzelne Eigenschaften von Objekten (z.B. Parameterwert oder Parametereinheit).

In Geräteprofilen ist durch die ODVA festgelegt, welche CIP-Objekte und -Attribute durch Geräte einer bestimmten Geräteklasse unterstützt werden müssen. Zusätzlich sind optionale und herstellerdefinierte Objekte und Attribute möglich.

Baumer Drehgeber mit Baumer EtherNet/IP Bushaube unterstützen das Encoder Device Profil, Gerätetyp 22 hex gemäß "Common Industrial Protocol Specification", Volume 1 der ODVA, Edition 3.7, November 2009.

Die Datenübertragung von CIP Nachrichten in EtherNet/IP Netzwerken erfolgt mittels impliziter und expliziter Nachrichten.

Implizite Nachrichten sind typischerweise kleinere Datenpakete für zeitkritische Datenübertragungen. Bei der Übertragung von I/O Daten handelt es sich um implizite Verbindungen, die in der Regel langfristigen Bestand haben. I/O Daten werden mittels UDP übertragen und verwenden den Port 2222.

Nicht zeitkritische Nachrichten werden mittels expliziter Nachrichten übertragen. Explizite Nachrichten sind beispielsweise Konfigurations- und Informationsdaten. Sie nutzen den TCP/IP Übertragungsmechanismus. Weitere Informationen zum Common Industrial Protocol (CIP) oder zu EtherNet/IP können über die ODVA bezogen werden (www.odva.org).

3.2. Objekt Model

Das Objektmodell beschreibt die benutzten Objektklassen des Drehgebers und ihre Beziehungen untereinander. Es ist im Geräteprofil 22Hex der ODVA für Encoder Devices definiert und im nachfolgenden Diagramm dargestellt. Objekte, welche von der Baumer Bushaube bereitgestellt werden, aber nur optionaler Bestandteil des Geräteprofils sind, wurden im Bild grau hinterlegt.

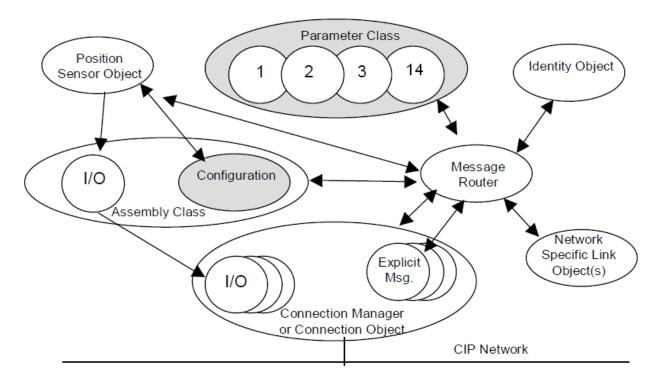


Bild 2: Objektmodell des Encoder Device Profiles als Bestandteil der Baumer Bushaube

Nachfolgende Tabelle zeigt die Objektklassen und die Anzahl der Instanzen, die in jeder Klasse verfügbar sind.

Objektklasse	Anzahl der Instanzen
01h: Identity Objekt	1
02h: Message Router Objekt	1
04h: Assembly Objekt	6, vorhanden sind die Instanzen 1, 2, 3, 100, 105, 110
06h: Connection Manager Objekt	1
0Fh: Parameter Objekt	14
23h: Position Sensor Objekt	1
F4h: Port Objekt	2
F5h: TCP/IP Interface Objekt	1
F6h: Ethernet Link Objekt	3

Tabelle 3: Verfügbare Objekte

Die Eigenschaften dieser Objekte sind in den nachfolgenden Abschnitten und / oder in der zugehörigen EDS Datei beschrieben.

3.3. Identity Objekt - 01hex

Das Identity Objekt ist gemäß Common Industrial Protocol Specification realisiert. Die Revision des Objektes ist 1. Der Klassencode ist 01h.

In Tabelle 4 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Für die Klassenattribute des Identity Objektes werden die Services

- 01h Get Attribute all
- 0Eh Get Attribute single unterstützt.

Attribut- ID			Datentyp	Beschreibung	Werte	
1	lesen	Revision	UINT	Revision des Objektes	1	
2	lesen	en Max Instance UINT		Höchste in dieser Klasse vorhandene Instanznummer	1	
3	lesen			Anzahl der vorhandenen Instanzen	1	
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute		
		number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	2	
		optional attributes	ARRAY of UINT	Liste der optionalen Instanz-Attributenummern	11, 12	
6	lesen	Maximum ID Number Class Attributes	UINT	Attributnummer des letzten Klassenattributes	7	
7	lesen	Maximum ID Number Instance Attributes	UINT	Attributnummer des letzten Instanzattributes	12	

Tabelle 4: Klassenattribute des Identity Objektes

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des Identity Objektes.

Attribut-	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Vendor ID	UINT	Identifikation des Herstellers	468 = Baumer Vendor ID
2	lesen	Device Type	UINT	Identifikation des Produkttyps (Geräteprofil)	34 = 22hex
3	lesen	Product Code	UINT	Identifikation des Teilproduktes eines Herstellers	
4	lesen	Revision Major Revision Minor Revision	STRUCT of USINT USINT	Revision des Produktes	
5	lesen	Status	WORD	Zusammengefasster Gerätestatus (siehe Beschreibung unterhalb der Tabelle	
6	lesen	Serial Number	UDINT	Seriennummer des Gerätes	
7	lesen	Produktname	SHORT_ST RING	Lesbare Produkt Identifikation	
11	lesen / schreiben	Active Language	STRUCT of USINT USINT USINT	Aktuell vom Gerät unterstützte Sprache Feld 1 des STRINGI Types Feld 2 des STRINGI Types Feld 3 des STRINGI Types	basierend auf ISO 639-2/T) STRINGI Datentyp
12	lesen	Supported Language List	ARRAY of STRUCT of USINT USINT USINT	Liste der unterstützten Sprachen als Feld von Einzelelementen wie in Attribut 11 beschrieben Feld 1 des STRINGI Types Feld 2 des STRINGI Types Feld 3 des STRINGI Types	

Tabelle 5: Identity Objekt, Instanzattribute

Das Attribut Status (Attributnummer 5) ist als Bitleiste definiert. Die einzelnen Bits haben die in Tabelle 6 beschriebene Bedeutung.

Bit(s)	Name	Bedeutung
0	Owned	= 1: mindestens 1 Objekt des Gerätes hat einen Besitzer. Das Bit wird gesetzt, wenn mindestens eine Class 1 oder eine Class 3 Verbindung im Zustand "Established" ist.
1		Reserviert, Wert = 0
2	Configured	 = 1: mindestens ein Applikationsattribut wurde gegenüber den Default-Einstellungen verändert. Das Bit wird gesetzt, wenn mindestens 1 schreibbares Attribut des Position Sensor Objektes verändert wurde.
3		Reserviert, Wert = 0
4-7	Extended Device Status	 = 0000: Selbsttest = 0001: Firmwareupdate ist aktiv = 0010: Mindestens 1 I/O Verbindung ist im Zustand Fehler (Timeout erkannt) = 0011: Es befinden sich keine I/O Verbindungen im Zustand "Established". Das Bit bezieht sich auf Class 1 Verbindungen. = 0100: Gespeicherte Konfiguration ist fehlerhaft. Das Bit wird gesetzt, wenn Fehler beim Lesen der im internen Flash gespeicherten Daten erkannt werden. = 0101: Ein schwerwiegender Fehler wurde erkannt. Zusätzlich ist das Bit 10 oder Bit 11 gesetzt = 0110: Es befindet ist mindestens 1 I/O Verbindung im Zustand Run (Aktiv). Das Bit bezieht sich auf Class 1 Verbindungen. = 0111: Es ist mindestens eine I/O Verbindung im Zustand "Established", jedoch befinden sich alle Verbindungen im Idle Mode. Die Anzeige dieses Zustandes wird nicht unterstützt. Alle anderen Bitkombinationen sind für herstellerdefinierte Informationen reserviert. Diese Bitkombinationen werden nicht benutzt.
8	Minor Recoverable Fault	Das Gerät hat einen nicht schwerwiegenden behebbaren Fehler erkannt. Das Bit wird gesetzt wenn eine Class 1 I/O Verbindung einen Timeout erkannt hat.
9	Minor Unrecoverable Fault	Diese Fehlerkategorie wird vom Gerät nicht unterstützt.
10	Major Recoverable Fault	Das Bit wird gesetzt, wenn - ein Fehler beim Lesen des internen Flash-Speichers - ein unzulässiger Sprung des Positionswertes (Position Error) erkannt wird.
11	Major Unrecoverable Fault	Das Bit wird gesetzt, wenn beim Einschalten an der Bushaube kein angeschlossener Basisgeber erkannt wird.
12-15		Reserviert, Wert = 0

Tabelle 6: Status - Attributbeschreibung

Für die Instanzattribute des Identity Objektes werden die Services

- 01h Get Attribute all
- 05h Reset Service

Es werden die Parameterwerte 0 und 1 unterstützt. Beide Parameterwerte bewirken nach erfolgtem Service ein Rücksetzen sämtlicher Verbindungskonfigurationen. Ein Rücksetzen von Applikationsparametern auf Factory default Werte erfolgt nicht!

- 0Eh Get Attribute single
- 10h Set Attribute single

unterstützt.

3.4. Position Sensor Objekt - 23hex

Das Position Sensor Objekt ist gemäß Common Industrial Protocol Specification realisiert. Die Revision des Objektes ist 2. Der Klassencode ist 23h.

In Tabelle 7 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Für die Klassenattribute des Position Sensor Objektes werden die Services

- 0Eh Get Attribute single unterstützt.

Attribut-	Zugriff	Name Datentyp		Beschreibung	Werte
1	lesen	Revision	UINT	Revision des Objektes	2
2	lesen	Max Instance	UINT	Höchste in dieser Klasse vorhandene Instanznummer	1
3	lesen	Number of Instances	UINT	Anzahl der vorhandenen Instanzen	1
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute	
		number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	18
		optional attributes	ARRAY of UINT	Liste der optionalen Instanz-Attributen- Nummern	1,2, 11, 16, 17, 19, 24, 42, 43, 44, 45, 46, 47, 48, 49, 51,100, 101
6	lesen	Maximum ID Number Class Attributes	UINT	Attributnummer des letzten Klassenattributes	7
7	lesen	Maximum ID Number Instance Attributes	UINT	Attributnummer des letzten Instanzattributes	101

Tabelle 7: Klassenattribute des Position Sensor Objektes

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des Position Sensor Objektes. Die detaillierte Beschreibung einzelner Instanzattribute ist der Beschreibung nach der Tabelle zu entnehmen.

Attribut -ID	Zugriff	Zugriff Name Daten- Beschreibung typ		Werte	
1	lesen	Number of Attributes	USINT	Anzahl der unterstützten Attribute	20
2	lesen	Attribute List	Array of USINT	Liste der unterstützten Attribute	1,2, 10, 11, 12, 16, 17, 19, 24, 42, 43, 44, 45, 46, 47, 48, 49, 51,100,101
10	lesen	Position Value Signed	DINT	Aktueller Positionswert	
11	lesen	Position Sensor Type	UINT	Spezifiziert den Gebertyp	
12	lesen / schreiben	Direction Counting Toggle	BOOL	Definiert die Drehrichtung in welcher der Positionswert steigt.	CW = 0 CCW = 1
16	lesen/ schreiben	Measuring Units per Span	UDINT	Anzahl der gewünschten Schritte pro Umdrehung	
17	lesen/ schreiben	Total Measuring Range in Measuring Units	UDINT	Anzahl der gewünschten Schritte über den gesamten Messbereich	
19	lesen / schreiben	Preset Value	DINT	Positionswert wird auf den Preset-Wert gesetzt	
24	lesen	Velocity Value	DINT	Aktueller Geschwindigkeits- wert	
42	lesen	Physical Resolution Span	UDINT	Anzahl der maximal unterscheidbaren Schritte pro Umdrehung	
43	lesen	Number of Spans	UINT	Maximale Anzahl der Umdrehungen	
44	lesen	Alarms	WORD	Zeigt ein erkanntes Fehlverhalten an, welches zu einem inkorrekten Positions- wert führen kann oder einen Benutzereingriff erfordert	
45	lesen	Supported Alarms	WORD	Information über unterstützte Alarme	
46	lesen	Alarm Flag	BOOL	Zeigt an, ob ein Alarm aufgetreten ist.	
47	lesen	Warnings	WORD	Zeigt ggf. vorhandene Warnungen an	
48	lesen	Supported Warnings	WORD	Information über unterstützte Warnungen	
49	lesen	Warning Flag	BOOL	Zeigt an, ob eine Warnung vorhanden ist	
51	lesen	Offset Value	DINT	Der Offset wird mit der Presetfunktion gerechnet. Die tatsächlich gemessene Position wird um diesen Wert verschoben.	
100	lesen / schreiben	Velocity Sample Rate	USINT	Velocity sample Rate in ms	1255
101	lesen/ schreiben	Velocity Filter	USINT	Anzahl Messungen zur Berechnung des gleitenden Durchschnitts	1255

Tabelle 8: Position Sensor Objekt, Instanzattribute

Position Value Signed - Attribut 10

Absolute Position des Gebers. Die Nullpunktkorrektur der Presetfunktion ist im angezeigten Wert berücksichtigt. Die Einheit des Positionswertes ist Inkremente bzw. Abtastschritte oder Counts.

Position Sensor Type - Attribut 11

Je nach verwendetem Basisgeber wird einer der folgenden werte angezeigt:

01 – Singleturn Absolut-Drehgeber

02 - Multiturn Absolut-Drehgeber

Direction Counting Toggle – Attribut 12

Verhalten der Positionsdaten in Abhängigkeit von der Drehrichtung des Drehgebers beim Drehen der Geber-Welle mit Blick auf den Flansch.

Einstellung CW ("clockwise") = Steigende Werte bei Drehung im Uhrzeigersinn

Einstellung CCW ("counterclockwise") = Steigende Werte bei Drehung im Gegenuhrzeigersinn

Der Parameterwert wird bei Veränderung nichtflüchtig gespeichert.

Measuring Units per Span – Attribut 16

Das Attribut definiert die Anzahl unterscheidbarer Schritte pro Umdrehung des Gebers. Der Wert ist eine Angabe der gewünschten Singleturn-Auflösung ("Schritte pro Umdrehung", "Measuring units per revolution"). Zulässig sind Werte zwischen 1 und der Maximalauflösung des Drehgebers pro Umdrehung (Attribut 42).

Eine Umparametrierung kann zu einer Änderung des Attributs 17 auf die Werte der Gleichungen (1) oder (2) führen, wenn der Wert des Attributes 17 kleiner als der minimale Wert oder grösser als der maximale Wert ist.

Eine Umparametrierung löscht den bisherigen Offset Value (Attribut 51), so dass der bisherige Positionsbezug verloren geht. Der Parameterwert wird bei Veränderung nichtflüchtig gespeichert.

Total Measuring Range in Measuring Units - Attribut 17

Dieses Attribut definiert die Gesamtanzahl der unterscheidbaren Schritte über den gesamten Messbereich. Der minimale Einstellungswert berechnet sich zu:

Der maximale Einstellungswert berechnet sich zu:

Wenn die Anzahl der Umdrehungen auf einen Wert ungleich 2ⁿ (1, 2, 4,...65536) programmiert ist, so muss nach Überfahren des Gebernullpunktes im stromlosen Zustand, neu parametriert werden. Die Anzahl der gezählten Umdrehungen berechnet sich zu:

Eine Umparametrierung löscht den bisherigen Offset Value (Attribut 51), so dass der bisherige Positionsbezug verloren geht. Der Parameterwert wird bei Veränderung nichtflüchtig gespeichert.

Preset Value – Attribut 19 Offset Value – Attribut 51

Die Presetfunktion unterstützt die Anpassung des Drehgebernullpunkts an den mechanischen Nullpunkt des Systems. Bei einem "Set Attribute" auf das Attribut 19 wird die aktuelle Position des Drehgebers auf den Preset-Wert gesetzt. Der interne Offsetwert (Attribut 51) wird berechnet und im Drehgeber gespeichert. Es gilt:

Achtung: Die Presetfunktion sollte nur im Stillstand des Drehgebers angewendet werden. Ein Preset muss immer vorgenommen werden, nachdem folgende Attribute geändert wurden:

- Measuring Units per Span Attribut 16,
- Total Measuring Range in Measuring Units Attribut 17

Beim Ausführen der Preset-Funktion wird intern ein Offsetwert (Attribut 51) berechnet und unmittelbar nichtflüchtig im Flash-Speicher abgelegt, so dass der Geber nach dem Aus- und Wiedereinschalten wieder die unveränderte Position hat. Das Flash ist typisch 100.000-mal wieder beschreibbar.

(1)

Ein häufiges programm- oder ereignisgesteuertes Setzen des Presets könnte jedoch trotz der sehr hohen Anzahl von möglichen Schreibzyklen zum Erreichen dieser Lebensdauergrenze führen, so dass bei der Auslegung der Steuerungssoftware in diesem Punkt eine gewisse Sorgfalt geboten ist.

Der Preset kann im Bereich zwischen 0 und einem Wert kleiner als der eingestellte Gesamtmessbereich (Attribut 17) gewählt werden.

Velocity Value - Attribut 24

Aktueller Geschwindigkeitswert des Gebers. Der Geschwindigkeitswert wird in der Einheit "Gezählte Abtastschritte / Sekunde" ausgegeben.

Physical Resolution Span - Attribut 42

Über dieses Attribut kann die physikalische Auflösung des Gebers als Abtastschritte pro Umdrehung ausgelesen werden.

Number of Spans - Attribut 43

Maximale Anzahl unterscheidbarer Umdrehungen. Der physikalische Messbereich ergibt sich aus: Physikalischer Messbereich = Attribut 42 (Physical Resolution Span) * Attribut 43 (Number of Spans)

(5)

Alarms – Attribut 44 Supported Alarms – Attribut 45 Alarm Flag – Attribut 46

Attribut 44 liefert die Alarmmeldungen. Ein Alarm wird gesetzt, wenn der Drehgeber einen Zustand erkannt hat, welcher zu einer falschen Drehgeberposition führen kann. Sobald ein Alarmzustand erkannt wird, wird das zugehörige Bit auf logisch High gesetzt. Der Alarm wird automatisch nach 5 Sekunden zurückgesetzt. Das Alarm Flag (Attribut 46) wird ebenfalls bei jedem Alarm gesetzt.

Folgende Alarme werden unterstützt:

0001 - Bit 0: Position Error 0002 - Bit 1: Diagnostic Error

1000 - Bit 12: Unerlaubter Sprung im Positionswert erkannt. (Der Sprung zwischen 2 Positionswerten entspricht einer unerlaubten Geschwindigkeit von mehr als 6200 Umdrehungen / Minute)

4000 - Bit 14: Flash Error (gespeicherte Daten konnten nicht gelesen werden)

8000 - Bit 15: Es wurde kein Drehgeber erkannt

Die Alarmmeldungen der Bits 12, 14 und 15 sind herstellerspezifisch definiert.

Warnings – Attribut 47 Supported Warnings – Attribut 48 Warning Flag – Attribut 49

Das Attribut 47 liefert Warnmeldungen. Warnungen werden vom Drehgeber gemeldet, wenn interne Parameter des Drehgebers außerhalb der Toleranz sind. Im Gegensatz zu Alarmmeldungen weisen Warnungen nicht auf eine falsche Position hin. Warnungen werden zurückgesetzt, sobald der Parameter, der außerhalb der Toleranz lag, wieder den korrekten Wert annimmt. Das Warn-Flag (Attribut 49) wird ebenfalls bei jeder Warnung gesetzt.

Folgende Warnungen werden unterstützt:

2000 – Bit 13: Der Geber arbeitet mit den Default-Einstellungen. Im Flash wurden keine gültigen Geberdaten gefunden.

Die Warnmeldung des Bits 13 ist herstellerspezifisch definiert.

Velocity Sample Rate – Attribut 100

Min Value: 1 Max Value: 255 Default Value: 1 Zeit in ms zwischen zwei Messungen (delta Steps und delta Time)

Velocity Filter – Attribut 101

Min Value: 1 Max Value: 255 Default Value: 1 Anzahl Messungen für die Berechnung des gleitenden Durchschnitts

Das Position-Sensor-Objekt unterstützt folgende Instanz-Dienste:

Code	Dienst	Beschreibung
0Eh	Get_Attribute_Single	Liefert den Inhalt eines ausgewählten Attributs
10h	Set_Attribute_Single	Verändert den Wert eines ausgewählten Attributs. Ist der Wert speicherbar, so wird er im nichtflüchtigen Speicher abgelegt.

Tabelle 9: Position Sensor Objekt unterstützte Attribut- Services

Hinweis:

Attribute mit Zugriffsrecht "schreiben" werden bei gültigem Schreibzugriff sofort nichtflüchtig abgespeichert.

Produkt	Auflösung in Schritte/Umdrehung (Measuring Units per Span)			Anzahl Umdrehungen (Number of Spans)		Gesamtmessbereich in Schritten (Total Measuring Range in Measuring Units)			
	Dezimal	Hex	Bit	Dezimal	Hex	Bit	Dezimal	Hex	Bit
HMG10 / PMG10 Singleturn	8192	2000	13	1	1	0	8192	2000	13
HMG10 / PMG10 Multiturn	8192	2000	13	65536	10000	16	536870912	20000000	29

Tabelle 9a: Drehgeber Auflösungen Werkseinstellung

Produkt-Varianten der gleichen Produktfamilie haben identische Default-Einstellungen

3.5. Assembly Objekt - 04hex

Das Assembly Objekt ist gemäß Common Industrial Protocol Specification angelegt. Die Revision des Objektes ist 2. Der Klassencode ist 04h.

In Tabelle 10 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Alle Instanzen des Assembly Objektes sind statische Instanzen. Dynamische Instanzen werden nicht unterstützt.

Auf die Klassenattribute des Assembly Objektes kann der Service

- 0Eh Get Attribute single angewendet werden.

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Revision	UINT	Revision des Objektes	2
2	lesen	Max Instance	UINT	Höchste in dieser Klasse vorhandene Instanznummer	110
3	lesen	Number of Instances	UINT	Anzahl der vorhandenen Instanzen	6
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute	
		number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	1
		optional attributes	ARRAY of UINT	Liste der optionalen Instanz-Attributnummern	4
6	lesen	Maximum ID Number Class Attributes	UINT	Attributnummer des letzten Klassenattributes	7
7	lesen	Maximum ID Number Instance Attributes	UINT	Attributnummer des letzten Instanzattributes	4

Tabelle 10: Klassenattribute des Assembly Objektes

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des Assembly Objektes.

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
3	lesen	Data	ARRAY of BYTE	Daten der Assembly Instanz	
4	lesen	Size	UINT	Anzahl Bytes in Attribut 3	Siehe Tabelle 13

Tabelle 11: Assembly Objekt, Instanzattribute

Auf die Instanzattribute des Assembly Objektes kann der Service - 0Eh Get Attribute single angewendet werden.

3.6. Assembly Instanzen

Der Drehgeber unterstützt 6 I/O Assembly Instanzen.

I/O Assembly Instanzen werden auch Verbindungspunkte genannt. Es wird zwischen folgenden Verbindungspunkttypen unterschieden:

- Originator -> Target (O->T). Diese Verbindungspunkte stellen aus Netzwerksicht für den Encoder Ausgangs Assembly Instanzen dar.
- Target -> Originator (T->O). Diese Verbindungspunkte stellen aus Netzwerksicht für den Encoder Eingangs Assembly Instanzen dar. Diese Instanzen beinhalten z.B. den Positionswert des Gebers.

Für das zyklische Lesen der Eingangsdaten des Drehgebers, können aus Sicht eines EtherNet/IP Scanners folgende Verbindungstypen genutzt werden:

- Exclusiv Owner, verwendet den O->T Verbindungspunkt 100. (maximal 1 gleichzeitige Verbindung ist erlaubt).
- Input Only, verwendet den O->T Verbindungspunkt 254.
- Listen Only, verwendet den O->T Verbindungspunkt 255.

Voraussetzung für den Aufbau von Listen Only Verbindungen ist, das bereits mindestens 1 Exclusiv Owner oder eine Input Only Verbindung zu dem gewünschten T->O Verbindungspunkt besteht.

Der Drehgeber unterstützt bis zu 128 gleichzeitige Verbindungen. Diese Verbindungen können als Class 1 oder als Class 3 Verbindungen realisiert sein.

Hinweis

Zeitgleich können nur zu einer Eingang-Assembly Instanz Class 1 Verbindungen aufgebaut werden.

Gemäß Encoder Device Profil werden die Assembly Instanzen 1, 2 und 3 für Eingangsdaten bereitgestellt. Außerdem können auch die Eingangsdaten der hersteller-spezifischen Assembly Instanz 110 verwendet werden.

Als Konfigurations-Assembly-Instanz ist die Objekt Instanz 105 definiert. Die Verwendung dieser Assembly-Instanz beim Aufbau von Class 1 Verbindungen ist eine Möglichkeit, den Drehgeber zu konfigurieren (siehe dazu auch Abschnitt 8 Gerätekonfiguration).

Die nachfolgende Tabelle fasst alle im Drehgeber definierten Assembly-Instanzen zusammen.

Instanz	Тур	Name	Size /Byte
1	Eingang	Position Value	4
2	Eingang	Position Value & Warning Flag	5
3	Eingang	Position Value & Velocity	8
110	Eingang	Vendor spezifisch: Pos, Velocity, Warning, Alarm	9
100	Ausgang	EIPScan	0
105	Konfiguration	Configuration	10

Tabelle 12: Baumer Bushaube – Assembly Instanzen

Die Datenformate der Assembly Instanzen sind in der nachfolgenden Tabelle dargestellt.

Instanz	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
1	0		Position LSB							
	1		Position							
	2		Position							
	3				Positio	n MSB				
2	0				Positio	on LSB				
	1				Pos	ition				
	2					ition				
	3				Positio	n MSB				
	4							Warn Flag	Alarm Flag	en
3	0				Positio	on LSB				anz
	1				Pos	ition				Eingangs Assembly Instanzen
	2				Pos	ition				bly I
	3				Positio	n MSB				eml
	4				Veloci	ty LSB				Ass
	5					ocity				'sbi
	6					ocity				ıgan
	7				Veloci	ty MSB				iii
110	0				Positions	wert LSB				
	1				Positio	nswert				
	2					nswert				
	3		Positionswert MSB							
	4		Velocity LSB							
	5	Velocity								
	6		Velocity							
	7		Velocity MSB							
	8							Warn Flag	Alarm Flag	

Instanz	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
105	0		Measuring Units per Span LSB						
	1			Mea	asuring U	nits per S	Span		
	2			Mea	asuring U	nits per S	Span		
	3			Measu	ıring Unit	s per Spa	n MSB		
	4			Tota	l Measuri	ng Range	LSB		
	5			To	tal Meas	uring Rar	ige		
	6			To	tal Meas	uring Rar	ige		
	7		Total Measuring Range MSB						
	8		Direction Counting Toggle						
	9				rese	erved			

Tabelle 13: Datenformat der Assembly Instanzen

3.7. Parameter Objekt – 0Fhex

Das Parameter Objekt ist gemäß CIP Specification implementiert. Die Revision des Objektes ist 1. Der Klassencode ist 0Fh.

In Tabelle 14 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Auf die Klassenattribute des Parameter Objektes kann der Service

- 0Eh Get Attribute single angewendet werden.

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
1	Lesen	Revision	UINT	Revision des Objektes	1
2	Lesen	Max Instance	UINT	Höchste in dieser Klasse vorhandene Instanznummer	16
3	lesen	Number of Instances	UINT	Anzahl der vorhandenen Instanzen	16
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute	
		number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	0
		optional attributes	ARRAY of UINT	Liste der optionalen Instanzattributenummern	0
8	lesen	Parameter Class Descriptor	WORD	Bitinformationen, welche die Parameter beschreiben	0x000B
9	lesen	Configuration Assembly Instance	UINT	Instanznummer der Konfigurations Assembly Instanz	105

Tabelle 14: Klassenattribute des Parameter Objektes

Die Bitinformationen des Klassenattributs 8 Parameter Class Descriptor haben folgende Bedeutung:

Bit 0: = 1 Für jeden Parameter ist eine Instanz des Parameter Objekts vorhanden

Bit 1: = 1 Jede Parameter Instanz besitzt alle Attribute

Bit 2:= 0 Die Daten werden mit dem Schreiben bei fehlerfreier Rückmeldung sofort automatisch gespeichert

Bit 3: = 1 Alle Parameter werden nichtflüchtig gespeichert

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des Parameter Objektes.

Attribut-	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen / schreiben	Parameter Value	Festgelegt in den Attributen 4, 5 und 6	Aktueller Wert des Parameters. Das Attribut ist Read Only, wenn das Bit 4 des Attributs 4 gesetzt ist.	
2	lesen	Link Path Size	USINT	Größe des Link Pfades (Attribut 3)	Byte- anzahl
3	lesen	Link Path	Packed EPATH	CIP Pfad zu Objekt, Instanz und Attribut von dem der Parameterwert empfangen wird	
4	lesen	Descriptor	WORD	Beschreibung der Eigenschaften der Parameter Objekt Instanz	
5	lesen	Data Typ	EPATH	Datentyp Code	
6	lesen	Data Size	USINT	Byteanzahl des Parameterwertes (Attribut 1)	
7	lesen	Parameter Name String	SHORT STRING	ASCII String mit vorangestellter Länge des Parameternamens	
8	lesen	Units String	SHORT STRING	ASCII String mit vorangestellter Länge der Einheit des Parameters (00 wenn der Parameterwert keine Einheit hat)	
9	lesen	Help String	SHORT STRING	ASCII String mit vorangestellter Länge der Hilfebeschreibung	
10	lesen	Minimum Value	Festgelegt in Attributen 4, 5 und 6	Der minimale Wert auf den der Parameter gesetzt werden kann	
11	lesen	Maximum Value	Festgelegt in Attributen 4, 5 und 6	Der maximale Wert auf den der Parameter gesetzt werden kann	
12	lesen	Default Value	Festgelegt in Attributen 4, 5 und 6	Default-Wert des Parameters, wenn keine Veränderung vorgenommen wurde	
13	lesen	Scaling Multiplier	UINT	Wert für Scaling Faktor	1
14	lesen	Scaling Divisor	UINT	Divisor für Scaling Berechnung	1
15	lesen	Scaling Base	UINT	Basis für Scaling Berechnung	1
16	lesen	Scaling Offset	INT	Offset für Scaling Formel	0
17	lesen	Multiplier Link	UINT	Parameter Instanz des Multiplier Wertes (0, wenn kein Parameter)	0
18	lesen	Divisor Link	UINT	Parameter Instanz des Divisor Wertes (0, wenn kein Parameter)	0
19	lesen	Base Link	UINT	Parameter Instanz des Basis Wertes (0, wenn kein Parameter)	0
20	lesen	Offset Link	UINT	Parameter Instanz des Offset Wertes (0, wenn kein Parameter)	0
21	lesen	Decimal Precision	USINT	Spezifiziert die Anzahl der Nachkomma-Stellen, wenn ein Integer Wert in der verwendeten Einheit mit Nachkommastellen interpretiert werden soll.	0

Tabelle 15: Parameter Objekt, Instanzattribute

Auf die Instanzattribute des Parameter Objektes können die Services

- 01h Get Attribute all
- 0Eh Get Attribute single
- 10h Set Attribute single angewendet werden.

Folgende Bits des Instanz Attributes 4, Deskriptor können in den Parameter Instanzen der Baumer Bushaube gesetzt sein und haben folgende Bedeutung:

Bit 4: Der Parameterwert ist Read Only und kann nur gelesen werden.

Bit 5: Der Parameterwert wird in Echtzeit vom Gerät aktualisiert.

Hinweis

Schreibbare Parameterwerte sind nach erfolgreichem Schreibzugriff nichtflüchtig im Gerät gespeichert. Das Schreiben des internen Flash erfolgt, wenn sich der neue Parameterwert vom alten unterscheidet und vom System als gültig akzeptiert wird

Mittels der Scaling Attribute (Instanz Attribute 13 bis 16 und 21) können Integer Parameterwerte in anderen Formaten dargestellt werden. Es gilt folgende Formel für Berechnung des darzustellenden Wertes:

Hinweis

In der aktuellen Firmware werden vom Geber ausschließlich die default Einheiten (C = Count für Positionswerte und CPS = Counts per Seconds für Geschwindigkeitswerte) unterstützt. Deshalb ergibt die Formel (6) stets: Darzustellender Wert = Actual Value (Attr. 1)

Parameter Instanzen beinhalten stets als Quelle Attribute von Instanzen anderer Objekte (Pfad siehe Parameter Instanz Attribut 3). In Tabelle 16 sind die einzelnen Parameter Instanzen mit ihren Quellen und wichtigen Eigenschaften benannt.

Die funktionale Bedeutung der Parameterwerte entspricht der funktionalen Beschreibung der jeweiligen Instanz Attribute der Quell Objekte und ist in den zugehörigen Abschnitten des Handbuches beschrieben.

Para- meter Instanz	Quell Objekt	Quell Instanz	Quell Attribut	Parametername	Minimaler Wert	Maximaler Wert	Default Wert
1	Position Sensor Objekt (23h)	1	12	DirCountToggle	0	1	0
2	Position Sensor Objekt (23h)	1	16	MeasUnitsPerSpan	1	Siehe Tabelle 9.a	Siehe Tabelle 9.a
3	Position Sensor Objekt (23h)	1	17	TotMeasRangeinUn	Siehe Tabelle 9.a	Siehe Tabelle 9.a	Siehe Tabelle 9.a
4	Position Sensor Objekt (23h)	1	19	PresetValue	0	Kleiner als der einge- stellte Ge- samtmess- bereich (s. Parameter Instanz 3)	0
5	Position Sensor Objekt (23h)	1	10	PositionValue	0	Eingestellter Gesamtmes sbereich (s. Para-meter Instanz 3)	0
6	Position Sensor Objekt (23h)	1	42	PhysResolSpan	Siehe Tabelle 9.a	Siehe Tabelle 9.a	Siehe Tabelle 9.a
7	Position Sensor Objekt (23h)	1	43	NumberOfSpan	Siehe Tabelle 9.a	Siehe Tabelle 9.a	Siehe Tabelle 9.a
8	Position Sensor Objekt (23h)	1	46	AlamFlag	0	1	0
9	Position Sensor Objekt (23h)	1	44	Alarms	0	D003hex	0
10	Position Sensor Objekt (23h)	1	45	SupportedAlarms	D003hex	D003hex	D003hex
11	Position Sensor Objekt (23h)	1	49	WarningFlag	0	1	0
12	Position Sensor Objekt (23h)	1	47	Warnings	0	2010hex	0
13	Position Sensor Objekt (23h)	1	48	SupportedWarnings	2010hex	2010hex	2010hex
14	Position Sensor Objekt (23h)	1	24	Velocity	0	FFFFFFFh ex	0
15	Position Sensor Objekt (23h)	1	100	Velocity Sample Rate	1	255	1
16	Position Sensor Objekt (23h)	1	101	Velocity Filter	1	255	1

Tabelle 16 Parameter Objekt Instanzen - Eigenschaften

4. EtherNet/IP spezifische Objekte

4.1. Einführung

Die Baumer Bushaube besitzt zwei physikalische Ethernet Ports P1 und P2 mit integrierter Switchtechnologie.

Beide physikalischen Ports verwenden eine gemeinsame MAC Adresse und eine gemeinsame IP Adresse. Beide Ports unterstützen Autonegotiation und stellen den Duplex Mode und die Interface Geschwindigkeit automatisch ein.

Bild 3 zeigt die in der Bushaube vorhanden EtherNet/IP spezifischen Objekte und ihre Beziehungen zueinander.

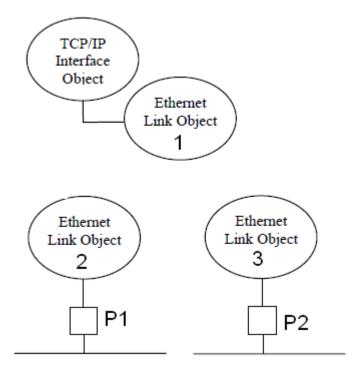


Bild 3: Darstellung der vorhandenen EtherNet/IP spezifischen Objekte

Die Kommunikationsschnittstelle der Baumer Bushaube wird durch eine Instanz des TCP / IP Interface Objektes und insgesamt 3 Instanzen des Ethernet Link Objektes beschrieben.

Die Beschreibung der beiden physikalischen Ethernet Ports P1 und P2 erfolgt über die Instanzen 2 und 3 des Ethernet Link Objektes. Die Instanz 1 des Ethernet Link Objektes wird für die Beschreibung des internen Geräteports des integrierten Switches benötigt.

4.2. Ethernet Link Objekt - F6hex

Das Ethernet Link Objekt ist gemäß Common Industrial Protocol Specification angelegt. Die Revision des Objektes ist 3. Der Klassencode ist F6h.

In Tabelle 17 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Auf die Klassenattribute des Ethernet Link Objektes können die Services

- 01h Get Attribute all
- 0Eh Get Attribute single angewendet werden.

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Revision	UINT	Revision des Objektes	3
2	lesen	Max Instance	UINT	Höchste in dieser Klasse vorhandene Instanznummer	3
3	lesen	Number of Instances	UINT	Anzahl der vorhandenen Instanzen	3
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute	
		number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	3
		optional attributes	ARRAY of UINT	Liste der optionalen Instanzattributenummern	7, 8, 10
6	lesen	Maximum ID Number Class Attributes	UINT	Attributnummer des letzten Klassenattributes	7
7	lesen	Maximum ID Number Instance Attributes	UINT	Attributnummer des letzten Instanzattributes	10

Tabelle 17: Klassenattribute des Ethernet Link Objektes

Instanzen des Ethernet Link Objektes

Instanz	Beschreibung
1	intern
2	Port P1
3	Port P2

Tabelle 17.a: Instanzen des Ethernet Link Objektes

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des Ethernet Link Objektes.

Attribut-	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Interface Speed	UDINT	Aktuelle Geschwindigkeit der Schnittstelle	
2	lesen	Interface Flags	DWORD	Interface Status Flags, siehe auch nachfolgende Beschreibung	
3	lesen	Physical Address	ARRAY of 6 USINT	MAC Adresse	
7	lesen	Interface Type	USINT	Schnittstellentyp, siehe auch nachfolgende Beschreibung	
8	lesen	Interface State	USINT	Allgemeiner Status der Schnittstelle, siehe auch nachfolgende Beschreibung	
10	lesen	Interface Label	SHORT_ STRING	Lesbare Identifikation der Schnittstelle	

Tabelle 18: Ethernet Link Objekt, Instanzattribute

Das Instanz Attribute 2 (Interface Flags) hat folgende Bedeutung:

Bit 0: Link Status: = 1 aktiver Link vorhanden

Bit 1: Half/Full Duplex: = 0 half duplex = 1 full duplex

Bits 2-4: Status Negotiation: = 0 Autonegotiation in Ausführung

= 1 Fehler Autonegotiation und Geschwindigkeitserkennung. Es werden default Werte verwendet.

= 2 Fehler Autonegotiation, aber Geschwindigkeit erkannt. Es wird der default Wert für den

Duplex-Mode verwendet.

= 3 Autonegotiation erfolgreich beendet. Duplex Mode

und Geschwindigkeit erkannt.

= 4 Autonegotiation nicht beendet. Werte für Speed

und Duplex Mode erzwungen.

Bit 5: Manual Settings required Reset: = 0 Die Schnittstelle kann automatisch Änderungen

der Attribute des Ethernet Link Objektes übernehmen

und benötigt keinen Reset zur Aktivierung

Bit 6: Local Hardware Fault: = 0 kein Hardwarefehler erkannt

= 1 Hardwarefehler erkannt

Bits 7-31: reserved

Der Interface Typ (Instanz Attribute 7) hat den Wert 1 für interne Schnittstellen (entspricht der Instanz 1 der Baumer Bushaube) oder den Wert 2 (Twisted pair Interface für die Objekt Instanzen 2 und 3).

Das Interface State Attribute (Instanz Attribute 8) hat folgende Bedeutung:

- 0: Der Interface Status ist unbekannt
- 1: Das Interface ist bereit zum Senden und zum Empfangen von Daten
- 2: Das Interface ist ausgeschalten
- 3: Das Interface ist im Testmode

4-256: reserviert

Auf die Instanzattribute des Ethernet Link Objektes können die Services

- 0Eh Get Attribute single
- 01h Get Attribute all angewendet werden.

4.3. TCP/IP Interface Objekt - F5hex

Das TCP/IP Interface Objekt ist gemäß CIP Specification angelegt. Die Revision des Objektes ist 1. Der Klassencode ist F5h.

In Tabelle 19 sind die bereit gestellten Klassenattribute aufgeführt. Klassenattribute werden über die Instanz 0 adressiert.

Auf die Klassenattribute des TCP/IP Interface Objektes können die Services

- 0Eh Get Attribute single
- 01h Get Attribute all

angewendet werden.

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Revision	UINT	Revision des Objektes	1
2	lesen	Max Instance	UINT	Höchste in dieser Klasse vorhandene Instanznummer	1
3	lesen	Number of Instances	UINT	Anzahl der vorhandenen Instanzen	1
4	lesen	Optional attribute list	STRUCT of	Liste der unterstützten optionalen Instanzattribute	
		Number of attributes	UINT	Anzahl der unterstützten optionalen Instanzattribute	2
		Optional attributes	ARRAY of UINT	Liste der optionalen Instanz-Attributnummern	8, 9
6	lesen	Maximum ID Number Class Attributes	UINT	Attributnummer des letzten Klassenattributes	7
7	lesen	Maximum ID Number Instance Attributes	UINT	Attributnummer des letzten Instanzattributes	9

Tabelle 19: Klassenattribute des TCP/IP Interface Objektes

Die folgende Tabelle beinhaltet alle unterstützten Instanzattribute des TCP/IP Interface Objektes.

Attribut-	Zugriff	Name	Datentyp	Beschreibung	Werte
1	lesen	Status	DWORD	Interface Status, siehe auch nachfolgende Beschreibung	
2	lesen	Configuration Capability	DWORD	Interface Eigenschaften, siehe auch nachfolgende Beschreibung	14hex
3	lesen / schreiben	Configuration Control	DWORD	Interface Control Flags, siehe auch nachfolgende Beschreibung	
4	lesen	Physical Link Objekt	STRUCT of	Pfad zum physikalischen Link Objekt	Pfad zum Ethernet Link Objekt, Instanz 1
		Path size	UINT	Größe des Pfades (Anzahl 16 bit Words im Pfad)	2
		Path	Padded EPATH	Pfad	20 F6 24 01
5	lesen / schreiben	Interface Configuration	STRUCT of	TCP/IP Netzwerkkonfigurat ion	
		IP Address	UDINT	IP Adresse des Gerätes	
		Network Mask	UDINT	Netzwerkmaske des Gerätes	0 = keine Netzwerkmaske konfiguriert
		Gateway Address	UDINT	Gateway Adresse des Gerätes	0 = keine Gateway-Adresse konfiguriert
		Name Server	UDINT	Primärer Name Server des Gerätes	0 = kein primärer Nameserver konfiguriert
		Name Server 2	UDINT	Sekundärer Name Server des Gerätes	0 = kein sekun- därer Nameserver konfiguriert
		Domain Name	STRING	Default Domain Name	ASCII Zeichen, Maximale Länge = 48 Zeichen Wird auf eine gerade Zeichenanzahl gepadded
6	lesen / schreiben	Host Name	STRING	Host Name des Gerätes	ASCII Zeichen, Maximale Länge = 64 Zeichen Wird auf eine gerade Zeichenanzahl gepadded
8	lesen / schreiben	TTL Value	USINT	TTL (Time to live) Wert für EtherNet /IP Multicast Frames	

Attribut- ID	Zugriff	Name	Datentyp	Beschreibung	Werte
9	lesen	Mcast Config	STRUCT of	IP Multicast Address Konfiguration siehe auch nachfolgende Beschreibung	
		Alloc Control	USINT	Multicast address allocation control word, legt fest, wie Adressen zugewiesen werden	
		reserved	USINT	ODVA, reserviert für eventuelle zukünftige Erweiterungen	0
		Num Mcast	UINT	Anzahl IP Multicast Adressen, welche für EtherNet/IP zugewiesen werden	
		Mcast Start Addr	UDINT	Startadresse, ab der die Multicast Adressen zugewiesen werden. (Class D Adresse)	

Tabelle 20: TCP/IP Interface Objekt, Instanzattribute

Das Attribute 1 (Status) hat folgende Bedeutung:

Bits 0 – 3: Interface Configuration Status: = 0: Das Attribute Interface Configuration (Attribute

5) wurde nicht konfiguriert.

= 1: Das Attribute Interface Configuration (Attribute 5) enthält gültige Werte, bezogen von BOOTP, DHCP oder aus dem internen Flash-Speicher.

= 2: Das Attribute Interface Configuration (Attribute 5) enthält gültige Werte, bezogen aus den Hardwareeinstellungen (HEX-Drehschalter).

= 3-15: reserved

Bit 4: Mcast Pending: = 1: Dieses Bit wird gesetzt, wenn das Attribute TTL Value (Attribute 8) oder das Attribute Mcast

Value (Attribute 8) oder das Attribute Mcast Config (Attribute 9) geändert wurde und wird beim nächsten Start des Gerätes gelöscht. Die vorgenommenen Konfigurationsänderungen

werden im Gerät gespeichert.

Bits 5 - 31: reserved

Das Attribute 2 (Configuration Capability) hat folgende Bedeutung:

Das Gerät gibt den Wert 14hex zurück, das heißt:

04 hex: Die Bushaube besitzt DHCP Client Funktionalität und kann die Netzwerkkonfiguration über

DHCP beziehen.

10 hex: Das Attribute Interface Configuration ist schreibbar.

Hinweis

Das Gerät besitzt keinen DNS Client und sendet den Host-Namen nicht im DHCP Request.

Über das Attribute 3 (Configuration Control) ist einstellbar, wie das Gerät die Initialeinstellung des Attributes Interface Configuration (Attribute 5) bezieht. Eine Änderung des Attribute 3 (Configuration Control) ohne Fehlermeldung wird sofort im geräteinternen Flash-Speicher abgelegt. Folgende Werte sind einstellbar:

- 0: Das Gerät liest seine Konfiguration aus dem internen Flash-Speicher oder von Hardware-Drehschaltern
- 2: Das Gerät bezieht seine Konfiguration über DHCP (default Einstellung).

Hinweis

Bei der Änderung des Attributwertes von 2 auf 0 wird die Einstellung der Interface Configuration (Attribute 5) ebenfalls im internen Flash des Gerätes gespeichert. Deshalb wird der Attributwert 0 nur akzeptiert, wenn die Interface Configuration (Attribute 5) zu diesem Zeitpunkt gültige Werte enthält.

Der Wert von Alloc Control als Bestandteil von Mcast Config (Attribute 9) hat folgende Bedeutung:

- 0: Für die Generierung der Multicast Adressen wird der spezifizierte Allocation-Algorithmus verwendet. Wird dieser Wert geschrieben, so sind die Werte für Num Mcast und Mcast Start Addr des Attributes im set Aufruf mit 0 zu übergeben.
- 1: Die Multicast Adressen werden gemäß der Einstellung der Werte für Num Mcast und Mcast Start Addr des Attributes zugewiesen.
- 2: reserved

Auf die Instanzattribute TCP/IP Interface Objektes können die Services

- 0Eh Get Attribute single
- 01h Get Attribute all
- 10h Set Attribute single
- 02h Set Attribute all

angewendet werden.

5. Inbetriebnahme

5.1. Elektrischer Anschluss

Zum elektrischen Anschluss Bushaube folgendermaßen abziehen:

- Befestigungsschrauben der Bushaube lösen
- Bushaube vorsichtig lockern und axial abziehen

5.1.1. Verkabelung

Für EtherNet/IP wird Fast EtherNet Kabel verwendet (100MBit, Cat 5). Es enthält vier Litzen AWG22 in den Farben weiß, gelb, blau und orange.

EtherNet/IP unterscheidet weiter zwischen drei Kabeltypen

- Typ A für Festverlegung
- Typ B für gelegentliche Bewegung oder bei Vibration (flexibel)
- Typ C für ständige Bewegung (hochflexibel).

5.1.2. Anschluss Bushaube

In der Bushaube sind drei Stecker M12 verbaut.

Zwei Stecker M12 (D-codiert, nach IEC 61076-2-101) dienen dem EtherNet/IP-Anschluss.

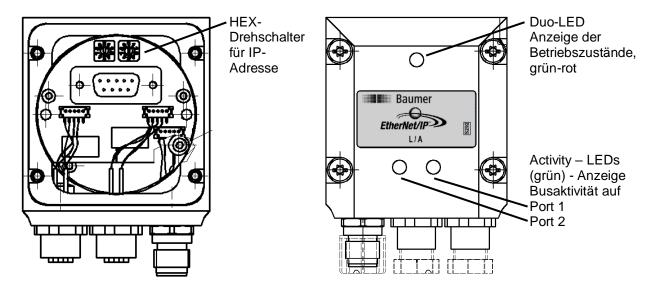


Bild 4: Bushaube - Elektrische Anschlüsse und LEDs

- Für die Betriebsspannung ausschließlich den A-codierten Stecker M12 verwenden.
- Für die Busleitungen können frei wählbar die beiden D-codierten Stecker M12 verwendet werden.
- Nicht benutzten Anschluss mit Schraubabdeckung verschließen (Lieferumfang).

Die IP-Adresse kann in der Bushaube mittels zwei HEX-Drehschaltern eingestellt werden (s. Kapitel 7). Weitere Einstellungen sind nicht erforderlich.

Anschlussbelegung Betriebsspannung

1 x Stecker M12 (Stift) A-codiert

Pin	Belegung		
1	UB (1030 VDC)		
2	N.C.		
3	GND		
4	N.C.		

EtherNet/IP (Datenleitung)

2 x Stecker M12 (Buchse) D-codiert

Pin	Belegung	
1	TxD+	
2	RxD+	
3	TxD-	
4	RxD-	

Tabelle 21: Anschlussbelegung

Zusammenbau von Basisgeber und Bushaube:

- Bushaube vorsichtig auf den D-SUB Stecker vom Basisgeber aufstecken, dann erst über den Dichtgummi drücken und nicht verkanten.
- Befestigungsschrauben gleichsinnig fest anziehen.
- Bushaube muss vollständig am Gehäuse des Basisgebers anliegen und fest mit ihm verschraubt sein

Drehgebergehäuse und Schirmgeflecht des Anschlusskabels sind nur dann optimal verbunden, wenn die Bushaube vollständig auf dem Basisgeber aufliegt (Formschluss).

Wurde die Bushaube vom Basis-Drehgeber getrennt, ist unbedingt zu beachten, dass nach dem ersten Einschalten die Betriebsspannung für mindestens 2 s stabil anliegt. Andernfalls kann es zum Löschen der MAC ID und der Seriennummer kommen.

5.2. Betriebs-Anzeige (mehrfarbige LED)

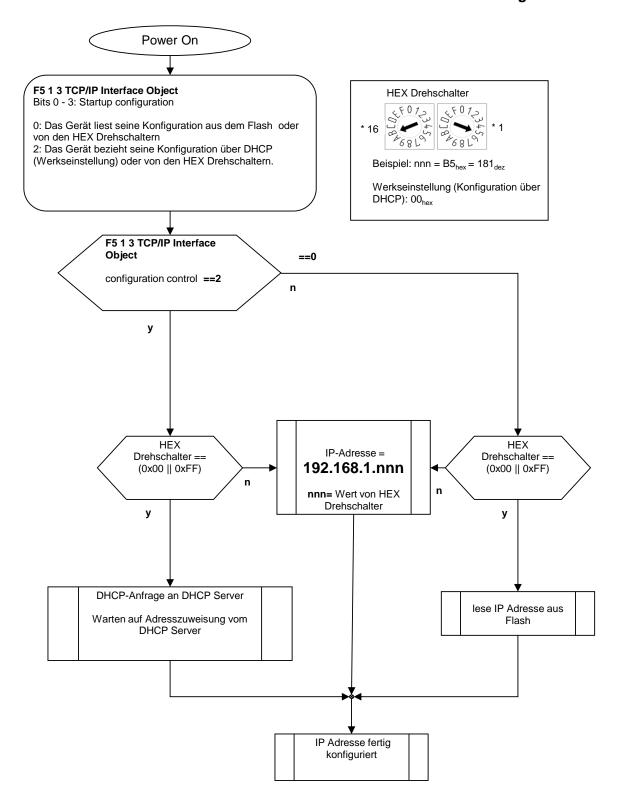
In der Bushaube befindet sich eine DUO LED (grün/rot) die nach Ethernet/IP Spezifikation die State Machine des Position Sensor Objekts widerspiegelt und Informationen über den Zustand des Drehgebers liefert.

LED-Zustand	Status	Beschreibung		
Aus	Nicht angeschlossen	Keine Spannungsversorgung		
Grün blinkend	Gerät aktiv und online Verbindungen bestehen nicht	Das Gerät arbeitet unter normalen Bedingungen und ist online, es ist keine Verbindung zu einem Scanner eingerichtet. - Drehgeber ist vom Scanner noch nicht konfiguriert worden - Konfiguration nicht komplett oder fehlerhaft		
Grün	Gerät ist aktiv und online Verbindungen sind eingerichtet	Das Gerät arbeitet unter normalen Bedingungen und ist online, Verbindungen im Zustand "established"		
Rot	Kritischer Gerätefehler oder Kritischer Kommunikationsfehler	Das Gerät befindet sich in einem nicht behebbaren Fehlerzustand		
Rot blinkend	Behebbarer Fehler	I/O Verbindungen sind im Time-Out Status		
2 Hz grün/rot Selbsttest		Gerät führt unmittelbar nach der Zuschaltung der Betriebsspannung einen Selbsttest durch.		

Tabelle 22: LED Betriebs-Anzeige Zustände

5.3. Activity Anzeige (grüne LEDs)

In der Bushaube sind weiter zwei grüne LEDs integriert, die Datenverkehr auf den beiden Ports P1 und P2 anzeigen. Bei gelegentlichem Datenverkehr (z.B. im Hochlauf) blinken die LEDs immer wieder auf, können aber auch bei schnellem zyklischem Datenaustausch als ständig eingeschaltet erscheinen. Unmittelbar nach dem Zuschalten der Betriebsspannung führen beide LED's einen Selbsttest mit einer Frequenz von 2 Hz durch.



6. IP Adresszuweisung

Zum Betrieb des EtherNet/IP Drehgebers ist es notwendig, dem Gerät eine IP-Adresse zuzuweisen. Diese kann einmalig statisch vergeben werden oder nach jedem Einschalten des Geräts dynamisch neu vergeben werden.

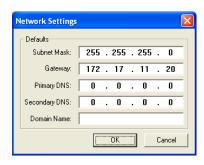
Bei Geräten mit zwei HEX-Drehschaltern wird die IP-Adresse nach folgender Vorgehensweise zugewiesen:

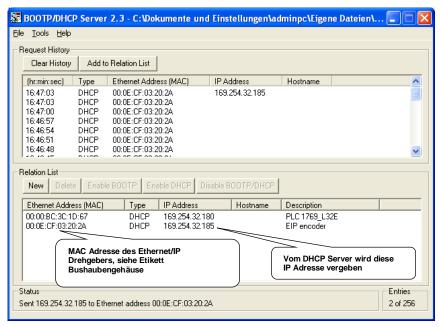
6.1. EtherNet/IP Bushaube mit HEX-Drehschalter: IP-Adress-Zuweisung im Hochlauf

6.2. IP Adresse mit BOOTP/DHCP "configuration tool" zuweisen

Ab Werk arbeitet das Gerät im Mode "IP Adresse über DHCP-Request"

Die IP Adresse muss von einem DHCP Server zugewiesen werden.


Dieser DHCP Server (Software) kann als frei erhältliche Software von der Allen-Bradley Rockwell Website bezogen werden.


www.ab.com/networks/ethernet/bootp.html

Der DHCP Server muss sich im gleichen Netz befinden wie der Drehgeber.

Unter *Tools, Network Settings* entsprechende Einstellungen vornehmen

Nach Installation meldet sich ein angeschlossener Ethernet/IP Drehgeber etwa wie folgt:

Bild 5:DHCP Server Tool

Mit dem Button *Disable BOOT/DHCP* (Antwort bei erfolgreicher Ausführung: Command successful) kann diese IP Adresse statisch vergeben werden, das heißt, beim nächsten Aus/Einschalten wird keine Anforderung an den DHCP Server mehr gesendet, der Drehgeber arbeitet fortan mit der zuvor vergebenen IP Adresse im Mode "IP-Adresse aus internem Flash".

Hinweis

Bitte notieren Sie sich die geänderte IP Adresse sorgfältig auf dem vorgesehenen Feld des Typenschild-Etiketts. (um spätere Probleme beim Betrieb in anderen Netzwerken zu vermeiden, siehe auch Anhang FAQ's)

MAC ID: 00:06:BE:E1:00:09
Ser.Nr.: 0x2AC8A8C6
Vendor ID: 0x1D4
Rev. Nr.: 01.03
IP 192 168 4 22

Beispiel: Etikett mit handschriftlich eingetragener IP-Adresse

Über das Instanz Attribut 3 des TCP/IP Objekt F5_{Hex} ist der Mode der IP-Adressierung auslesbar

Class ID	Attribut- ID	Zugriff	Name	Datentyp	Beschreibung
0xF5	3	lesen/ schreiben	Configuration Attribute	DWORD	Bestimmt, wie das Gerät seine Initialkonfiguration nach dem Einschalten erhält

Tabelle 23: Attribute 3 TCP/IP Objekt

Werte

0 = Interface Konfiguration aus nichtflüchtigem Speicher **oder** von Hardware (HEX-Drehschalter)

2 = Interface Konfiguration über DHCP Server (Werkseinstellung)

6.3. RSLinx Classic Lite

RSLinx Classic Lite für Rockwell Automation Netzwerke und Geräte ist eine Betriebs-Kommunikationslösung für eine Vielzahl von Rockwell Software und Allen-Bradley Anwendungen.

RSLinx Classic Lite verfügt über die Mindestfunktionalität, die zur Unterstützung von RSLogix und RSNetWorx erforderlich ist.

Diese Version ist nicht im Handel erhältlich, ist jedoch im Lieferumfang von Produkten enthalten, die nur direkten Zugang zu RSLinx Classic-Netzwerktreibern benötigen.

RSLinx Classic Lite kann für folgende Prozesse eingesetzt werden:

- Programmieren von Kontaktplanlogik mithilfe von RSLogix-Produkten.
- Netzwerk- und Gerätekonfiguration und -Diagnose mithilfe von RSNetWorx.
- Konfiguration von Ethernet-Modulen bzw. -Geräten (z.B. 1756-ENET, 1756-DHRIO usw.).
- Durchsuchen von Netzwerken und Abfragen von Geräteinformationen (z.B. Firmware-Versionsnummer).

6.4. RSWho

RSWho ist das Hauptfenster von RSLinx Classic Lite und ähnelt in der grafischen Anzeige von Netzwerken und Geräten dem Windows-Explorer.

Der linke Fensterbereich von RSWho ist die Verzeichnissteuerung, die Netzwerke und Geräte anzeigt.

In diesem Beispiel wird der zuvor mit dem DHCP Server konfigurierte Drehgeber im Netz mit Angabe der IP-Adresse dargestellt.

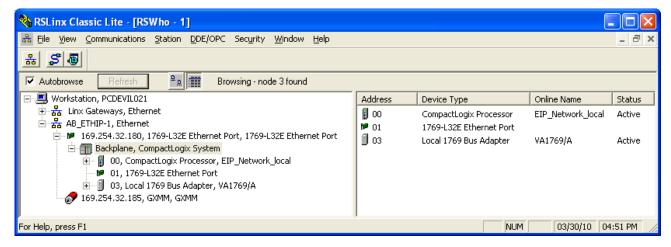


Bild 6:Ansicht unter RSLinx Classic Lite

7. Gerätekonfiguration

7.1. Einführung

Prinzipiell ist der Drehgeber mit den werkseitig voreingestellten Parametern betriebsbereit. Trotzdem wird nach dem Einstellen der IP Adresse, wie in Abschnitt 7 beschrieben, die Anpassung der Geberkonfiguration an die jeweilige Anwendung notwendig sein.

Zu den einzustellenden Gebereigenschaften gehören:

- Drehrichtung bzw. Definition der Zählrichtung
- Messbereich innerhalb einer Umdrehung
- Gesamtmessbereich des Gebers
- Abgleich des Geberkoordinatensystems mit dem Koordinatensystem der Applikation (Preset-Wert)

Alle genannten Eigenschaften werden sofort nach einer fehlerfreien Übertragung nichtflüchtig im Gerät gespeichert. Der Speichervorgang wird jedoch nur bei einer Veränderung eines Wertes ausgelöst. Die wiederholte Übertragung gleicher Werte löst keinen erneuten Speichervorgang aus.

Für die Gerätekonfiguration stehen 3 voneinander unabhängige und gleichberechtigte Mechanismen zur Verfügung, die verwendet werden können aber jeder für sich betrachtet nicht verwendet werden müssen. Die Kombination mehrerer Mechanismen kann sinnvoll und notwendig sein (Bitte nachfolgenden Hinweis zum Setzen des Preset-Wertes beachten).

In den nächsten 3 Abschnitten werden Beispiele zur Geberkonfiguration für jeden Mechanismus beschrieben.

Hinweis

Der Abgleich der Koordinatensysteme über den Preset-Wert ist nicht mit der Konfigurations-Assembly Instanz möglich, weil das Senden der Konfigurations-Assembly Instanz mit den Forward Open Frames beim Kommunikationsaufbau erfolgt.

Das Setzen des Positionswertes ist üblicherweise nicht an den Zeitpunkt des Aufbaus einer zyklischen Verbindung gekoppelt.

Der Preset-Wert kann aber z.B. unter Verwendung des Parameter Objektes eingestellt werden, während alle anderen Einstellungen über die Konfigurations-Assembly Instanz vorgenommen werden.

7.2. Verwendung des Parameter Objektes

Bei der Verwendung des Parameterobjektes (Klassencode 0Fhex) erfolgt die Konfiguration über den Set Attribut Single Service des Instanzattributes 1 (Parameter Value).

Zur Überprüfung des gewünschten Einstellwertes kann vorab der zulässige Einstellbereich des Parameters durch Lesen des Minimalwertes (Instanzattribut 10) und des Maximalwertes (Instanzattribut 11) ermittelt werden.

Da sich die Einstellgrenzen des Gesamtmessbereichs des Gebers zu einem bestimmten Zeitpunkt aus dem aktuell eingestellten Messbereich innerhalb einer Umdrehung berechnen, sollte der Messbereich innerhalb einer Umdrehung vor dem Gesamtmessbereich des Gebers eingestellt werden. Bild 7 zeigt den schematischen Ablauf der Geberkonfiguration unter Verwendung des Parameter Objekts.

Werden ungültige Einstellwerte geschrieben (z.B. Einstellwert außerhalb des Einstellbereiches des Parameters), weist der Geber den Wert mit einer Fehlermeldung ab (siehe Bild 8, Status = 0x03hex).

Bei fehlerfreier Ausführung des Set Attribute Singe Service wird der Status 0x00 hex zurückgegeben.

Schritt 1

Einstellen des Messbereichs innerhalb einer Umdrehung

Objectcode = 0x0Fhex Instanz = 2 Attributnummer = 1

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Schritt 2

Einstellen des Gesamtmessbereichs des Gebers

Objectcode = 0x0Fhex Instanz = 3 Attributnummer = 1

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Schritt 3

Einstellen der Definition der Zählrichtung

Objectcode = 0x0Fhex

Instanz = 1 Attributnummer = 1

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Geber wird auf die Presetposition gestellt

Schritt 4

Einstellen des Preset-Wertes (Abgleich der Koordinatensysteme)

Objectcode = 0x0Fhex

Instanz = 4 Attributnummer = 1

Service: CIP Set Attribute Single = 0x10hex

Hinweis: Der Preset-Wert sollte im Stillstand gesetzt werden! Anderenfalls können Ungenauigkeiten auftreten!

Bild 7: Geber Konfiguration mit dem Parameterobjekt

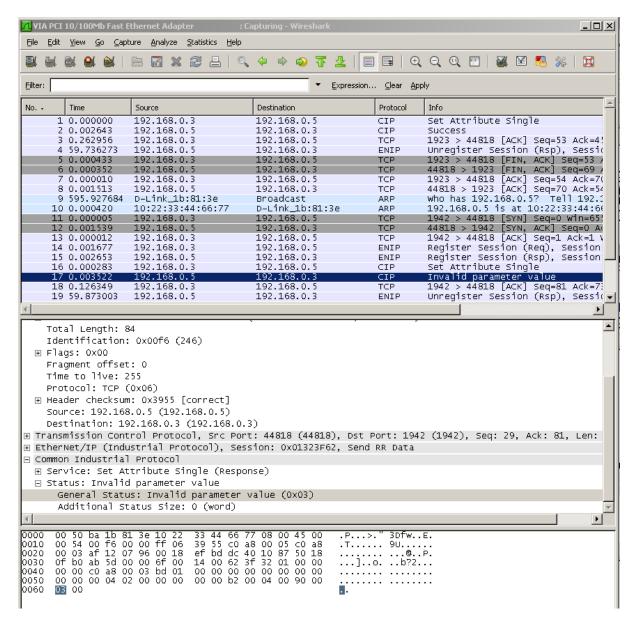


Bild 8: Aufzeichnung eines fehlerhaften Set Attribute Single Services

Aus der Sicht des Gebers muss die Konfiguration der Einstellwerte (Schritte 1 – 4 in Bild 7) nur einmalig durchgeführt werden.

Aus Sicht der Applikation kann es aber auch sinnvoll sein, z.B. die Schritte 1-3 nach jedem Einschalten des Gebers auszuführen.

Das Parameterobjekt bietet auch die Möglichkeit Textstrings für den Parameternamen, die Einheit des Parameters und einen Hilfetext gemäß "Common Industrial Protocol Specification" aus dem Geber auszulesen. Als Sprache wird Englisch unterstützt.

7.3. Verwendung der Konfigurations Assembly-Instanz 105

Bei der Verwendung der Konfigurations Assembly-Instanz 105 erfolgt die Konfiguration des Gebers mit der Übertragung im Forward Open Frame beim Verbindungsaufbau (siehe Bild 9).

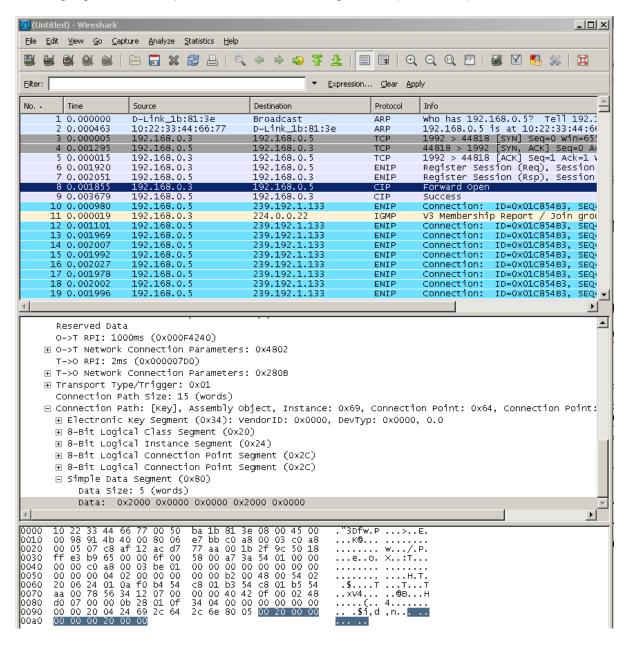


Bild 9: Konfigurations Assembly Instanz 105 im Forward Open Frame

Da zu jedem Zeitpunkt nur eine Exclusiv Owner Verbindung von der Bushaube akzeptiert wird (siehe auch Abschnitt 4.6), kann z.B. dieser Verbindungstyp genutzt werden, um die Konfigurations-Assembly Instanz zu übertragen.

Der Datenaufbau der Assembly-Instanz 105 ist in Tabelle 13 dargestellt. Die Daten werden nacheinander von der Bushaube in folgender Reihenfolge übernommen:

- 1. Einstellen des Messbereichs innerhalb einer Umdrehung (Measuring Units per Span)
- 2. Einstellen des Gesamtmessbereichs des Gebers (Total Measuring Range in Measuring Units)
- 3. Einstellen der Definition der Zählrichtung (Direction Counting Toggle)

Die Übernahme der Konfigurationsdaten erfolgt geräteintern über das Parameterobjekt. Damit ist sichergestellt, dass die Übernahme der Konfigurationswerte nach den gleichen Überprüfungen wie bei der direkten Nutzung des Parameterobjektes (siehe Abschnitt 8.2) erfolgt.

Wird in den Daten der Konfigurations Assembly Instanz ein Fehler festgestellt, kommt kein Verbindungsaufbau zu Stande. Die Verbindung wird seitens des Gebers mit einem Connection failure Frame abgewiesen (siehe Bild 10, Status = 0x01, Additional Staus = 0x0118).

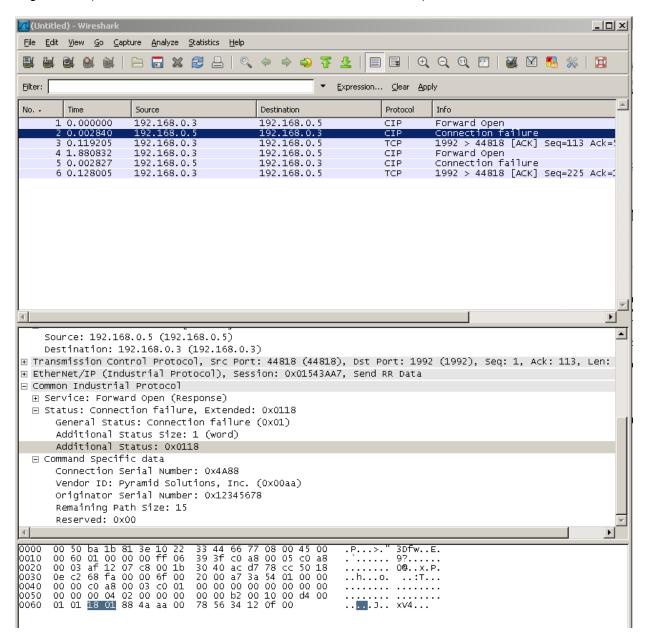


Bild 10: Connection failure Frame wegen fehlerhaftem Wert in der Assembly Instanz 105

Hinweis

Auch bei fehlerhaften Daten in der Assembly Instanz 105 kann ein Teil der Konfigurationsdaten wirksam geworden sein!

Wurde zum Beispiel ein falscher Wert für Zählrichtung geschrieben, die Werte für die Einstellung des Messbereichs innerhalb einer Umdrehung und für die Einstellung des Gesamtmessbereichs des Gebers sind aber gültige Werte, so wurden diese beiden Werte bereits vom Geber übernommen, bevor die Verbindung abgewiesen wurde.

Bei der Einstellung des Preset-Wertes (Abgleich der Koordinatensysteme) ist zu beachten, dass der Preset-Wert mit jeder Änderung der Einstellung des Messbereichs innerhalb einer Umdrehung oder der Einstellung des Gesamtmessbereichs des Gebers neu vorgenommen werden muss (siehe Abschnitt 4.4). Deshalb sollte bei der Verwendung der Assembly Instanz 105 zur Geberkonfiguration sichergestellt werden, dass vor der erstmaligen Einstellung des Preset-Wertes (Abgleich der Koordinatensysteme) mindestens einmal die Assembly Instanz 105 fehlerfrei übertragen wurde.

Aus der Sicht des Gebers gilt auch für die Nutzung der Konfigurations Assembly Instanz, dass die Konfiguration des Gebers nur einmalig übertragen werden muss.

Aus Sicht der Applikation wird eine Übertragung mindestens mit jeder Exclusiv Owner Verbindung erfolgen.

7.4. Direkte Verwendung des Position Sensor Objektes

Die Vorgehensweise bei der direkten Verwendung des Position Sensor Objektes zur Konfiguration des Gebers unterscheidet sich nur unwesentlich von der Verwendung des Parameterobjektes (siehe Abschnitt 8.2).

Die Konfiguration erfolgt über den Set Attribut Single Service des jeweiligen Instanzattributes des Position Sensor Objektes (23hex).

Das direkte Beschreiben des Position Sensor Objektes verwendet die gleichen Kontrollfunktionen zur Datenüberprüfung wie das Parameter Objekt.

Werden ungültige Einstellwerte geschrieben (z.B. Einstellwert außerhalb des Einstellbereiches des Attributes), weist der Geber den Wert mit einer Fehlermeldung ab. (siehe auch Bild 8, Status = 0x03hex).

Bei fehlerfreier Ausführung des Set Attribute Singe Service wird der Status 0x00 hex zurückgegeben.

Aus der Sicht des Gebers muss die Konfiguration der Einstellwerte (Schritte 1-4 in Bild 11) nur einmalig durchgeführt werden.

Aus Sicht der Applikation kann es aber auch sinnvoll sein, z.B. die Schritte 1-3 nach jedem Einschalten des Gebers auszuführen.

Schritt 1

Einstellen des Messbereichs innerhalb einer Umdrehung

Objectcode = 0x23hex Instanz = 1 Attributnummer = 16

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Schritt 2

Einstellen des Gesamtmessbereichs des Gebers

Objectcode = 0x23hex Instanz = 1 Attributnummer = 17

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Schritt 3

Einstellen der Definition der Zählrichtung

Objectcode = 0x23hex

Instanz = 1 Attributnummer = 12

Service: CIP Set Attribute Single = 0x10hex

Encoder: CIP Success

Geber wird auf die Presetposition gestellt

Schritt 4

Einstellen des Preset-Wertes (Abgleich der Koordinatensysteme)

Objectcode = 0x23hex

Instanz = 1 Attributnummer = 19

Service: CIP Set Attribute Single = 0x10hex

Hinweis: Der Preset-Wert sollte im Stillstand gesetzt werden! Andernfalls können Ungenauigkeiten auftreten!

Bild 11 Geber Konfiguration mit dem Position Sensor Objekt

8. RSLogix5000 Beispiel Projekt

8.1. Eingangsdaten einlesen

- Neues Projekt unter RSLogix5000 anlegen
- New Module auswählen
- ETHERNET MODULE Generic Ethernet auswählen

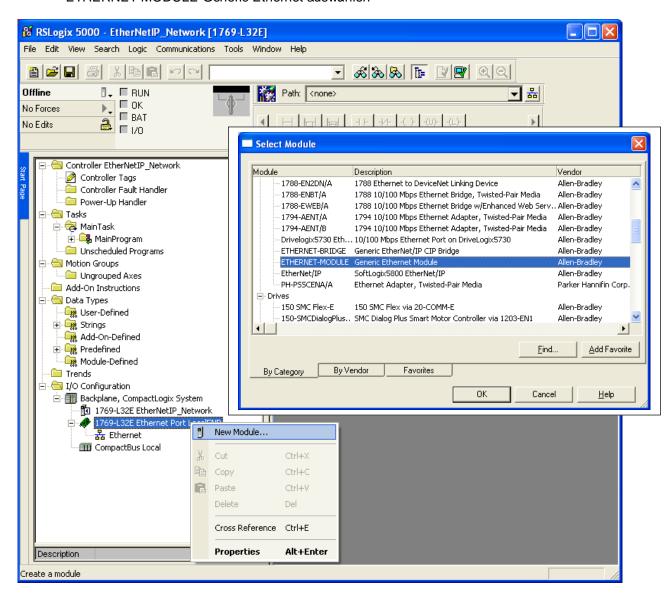


Bild 12: Generic Ethernet Module

8.1.1. Generic Ethernet Module konfigurieren

Assembly Instance auswählen (siehe Kapitel E/A Assembly-Instanzen)

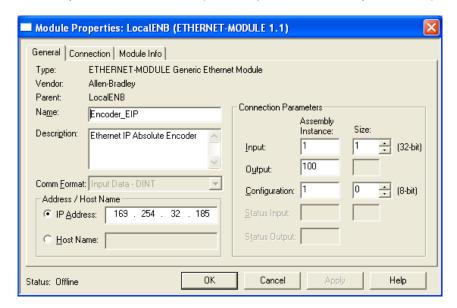


Bild 13: Konfiguration Assembly Instanzen

Requested Packet Intervall auswählen

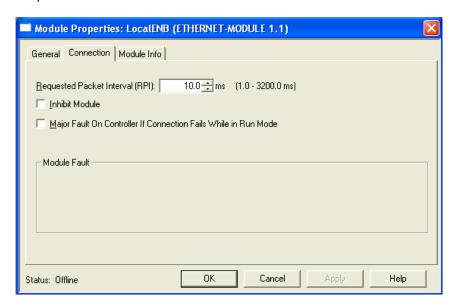


Bild 14: Zykluszeit Eingangsdaten definieren

Min. Zykluszeit: 2 ms Max. Zykluszeit: 3200ms

Mit Click auf Symbol Metzwerk Pfad auswählen

Go Online

Mit Download Übertragung zur SPS starten und mit RUN Start des SPS Programms

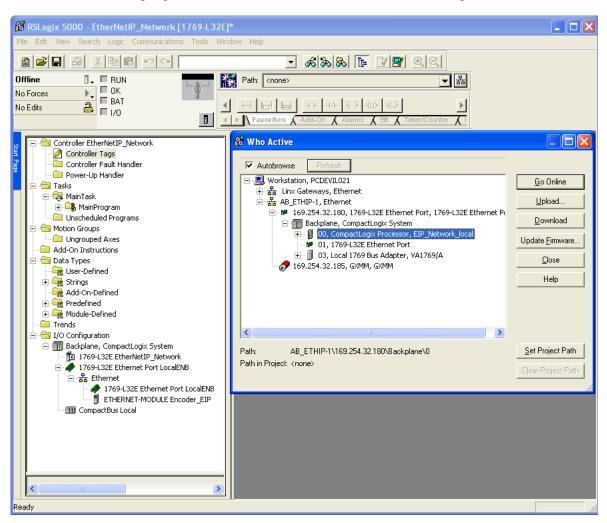


Bild 15: Netzwerk-Pfad auswählen

Drehgeber Position (Eingangsdaten) mit Monitor Tags beobachten



Bild 16: Monitor Tags Positionsdaten

8.2. Explicit Messaging, SPS Beispielprogramm Set Preset

Hier: Set Attribute Single auf Klasse 0x23, Instanz 1, Attribut 0x13

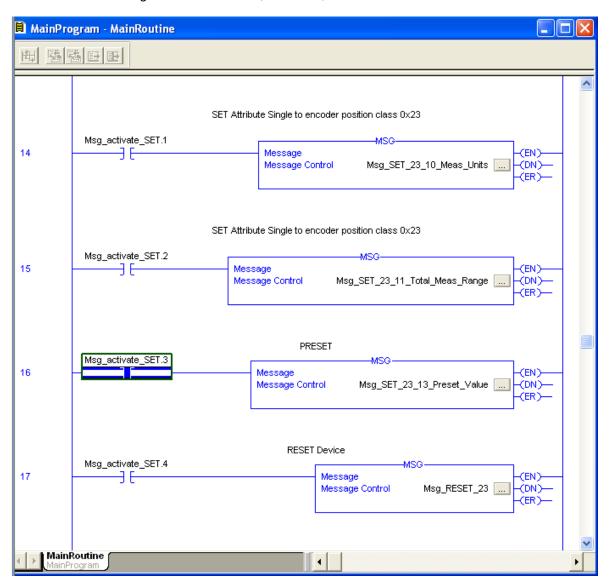


Bild 17: Ladder logic Darstellung

8.2.1. Program Tags anlegen

Msg_activate_SET zum Aktivieren des Presets-Befehls anlegen

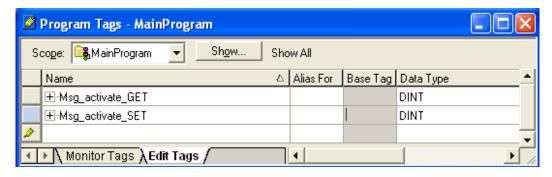


Bild 18: Struktur Msg_activate_SET

8.2.2. Controller Tags anlegen

- 1. Tag vom Typ MESSAGE für den Preset Setzbefehl
- 2. Tag vom Typ DINT für die Eingabe des gewünschten Wertes

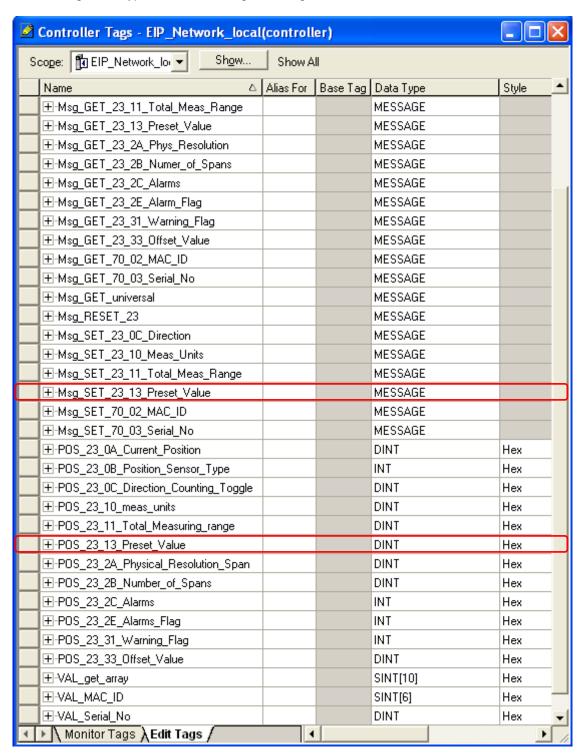


Bild 19: Controller Tags

8.2.3. Konfiguration der Message Tag

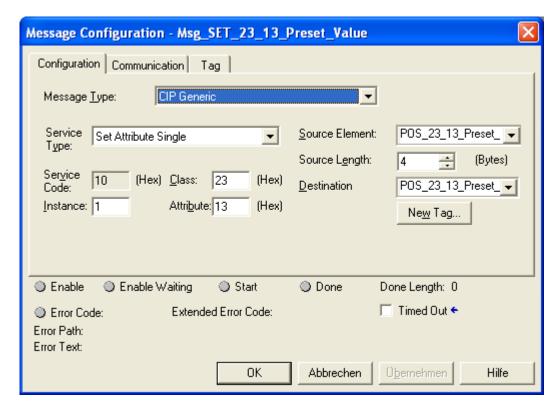


Bild 20: Set Attribute Single Message Configuration

Nach Download und Run des SPS Programms kann jetzt mit der Tastenkombination STRG-T der Preset Befehl ausgeführt werden.

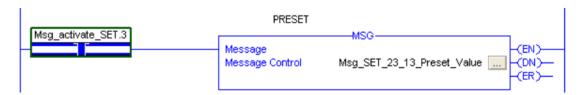


Bild 21: Aktivieren des Preset Befehls

Dabei wird die aktuelle Position des Drehgebers auf den Preset-Wert gesetzt.

9. Verwendete Abkürzungen und Begriffe

ARRAY Feld-Datentyp Attr. Attribut

BOOL Datentyp welcher nur die Werte WAHR oder FALSCH annehmen kann

BYTE Datentyp – 8 bit

CIP Common Industrial Protocol DINT Signed 32-bit integer value

DWORD Bit Feld – 32 bits

EMV Elektromagnetische-Verträglichkeit
ERTEC Enhanced Real-Time Ethernet Controller
h Abkürzung für hexadezimale Darstellung
hex Abkürzung für hexadezimale Darstellung
I/O Input / Output oder Eingang / Ausgang

IP Internet Protokoll im Zusammenhang mit EtherNet/IP aber Industrial Protocol

OSI Referenzmodell Open Systems Interconnection Reference Model

ODVA Open Device-Net Vendor Association Packed EPATH Datentyp – CIP Pfad Segmente

PE Potential Erde

SHORT_STRING Character string (1 byte per character, 1 byte length indicator) – Datentyp

STRING Datentyp -. Character String (1 byte per character)

STRINGI Internationaler Charakterstring

STRUCT Struktur – Datentyp

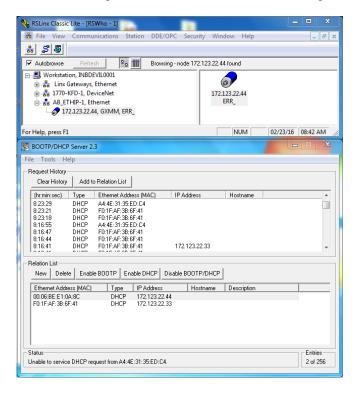
TCP Transmission Control Protocol
UDINT Unsigned 32-bit integer value
UDP User Datagram Protocol
UINT Unsigned 16-bit integer value
USINT Unsigned 8-bit integer value

WORD Bit Feld – 16 bits

10. FAQ's

10.1. Gerät nicht ansprechbar / IP Adresse unbekannt

Das Gerät arbeitet im Mode "IP-Adresse aus internem Flash" IP Adresse ist im Flash gespeichert aber nicht bekannt.


Geber wird unter RSLinx nicht angezeigt. (Gerät antwortet nicht auf PING Kommando)

Abhilfe:

- Gerät spannungsfrei schalten.
- Basisgeber vorsichtig von Bushaube lösen.
- Bushaube (ohne Basisgeber) einschalten, Betriebs-Anzeige Duo- LED leuchtet rot.
- Jetzt arbeitet die Bushaube im Mode "IP Adresse über DHCP-Request".
- NIC (Netzwerkkarte) auf "dynamic" (DHCP enable) konfigurieren.
- Bushaube und NIC am BOOTP/DHCP Server betreiben.
- IP Adressen für NIC und Bushaube in gleichem Netz vergeben.
- Bushaube ist jetzt unter RSLinx als Teilnehmer sichtbar (Devicename: ERR_ siehe Bild Unten).
- Bushaube wie unter 7.2 beschrieben adressieren.
- Button "Enable DHCP" betätigen.
- Gerät muss sich danach mit "Command successful" melden.
- Bushaube spannungsfrei schalten.
- Basisgeber montieren.
- Nach Power On arbeitet das Gerät wieder im Mode "IP Adresse über DHCP-Request".

IP Adressierung bei Betrieb "Bushaube ohne Basisgeber" an RSlinx und BOOTP/DHCP Server

Bei Geräten mit Drehschaltern:

- Basisgeber vorsichtig von Bushaube lösen
- Drehschalter auf Einstellung ungleich 00, z.B. 22
- Gerät arbeitet jetzt im Mode "IP-Adresse von HEX-Drehschalter"
- In diesem Beispiel kann der Geber unter der Adresse 192.168.1.22 angesprochen werden