Jak mierzy się siłę?

W przypadku pomiaru siły za pomocą czujników siły, czujnik siły jest idealnie umieszczony w taki sposób, aby cała siła przepływała przez czujnik, a czujnik siły znajdował się bezpośrednio w przepływie siły. Ważne jest, aby siła była wprowadzana centralnie, a powierzchnia styku była wystarczająco sztywna.

Kraftmessung.jpg

Jak działa czujnik siły?

Przetwarzanie zmiennej mechanicznej na sygnał elektryczny odbywa się za pomocą czujników siły opartych na tensometrach w trzech etapach. Punktem wyjścia każdego czujnika siły z tensometrami jest korpus sprężyny, na którym obciążenia zewnętrzne powodują rozszerzanie się powierzchni materiału.
 
To naprężenie jest niszczone za pomocą czujników tensometrycznych przyłożonych do powierzchni korpusu sprężyny. Tensometry przekształcają przy tym naprężenie mechaniczne w zmianę rezystancji elektrycznej i działają jako konwerter mechaniczno-elektryczny. Ta zmiana rezystancji powoduje zmianę napięcia proporcjonalną do siły. Za pomocą inteligentnego połączenia poszczególnych tensometrów w mostek pomiarowy Wheatstonea można rejestrować nawet najmniejsze naprężenia.
Funktionsweise Kraftsensor.jpg

Decydujące zalety czujników siły opartych na tensometrach to:


Korpus sprężyny Mechanical converter

Punktem wyjścia każdego czujnika siły jest korpus sprężyny, który odkształca się w wyniku działania siły. Decydującym czynnikiem jest tutaj fakt, że odkształcenie jest czysto sprężyste, co oznacza, że ​​odkształcenie zachodzi w granicach sprężystości i że korpus sprężyny powraca do swojego pierwotnego kształtu po obciążeniu zerowym obciążeniem.
 
Czujnik siły materiał
Czujniki siły firmy Baumer są zwykle wykonane z wysokowytrzymałej stali szlachetnej (1.4542). Czujniki siły wykonane ze stali poddanej obróbce cieplnej, aluminium lub innych stopów metali są również możliwe do zastosowań specjalnych.
 
Kraftsensor_FEM.jpg

Konstrukcja i wytrzymałość zmęczeniowa
Wyzwanie w projektowaniu i rozmieszczeniu korpusu sprężyny polega na konflikcie między możliwie najbardziej miękką strukturą zapewniającą dobrą wydajność pomiaru a limitowanym ograniczeniem materiału. Wykorzystując złożone, wspomagane komputerowo symulacje MES, korpus sprężyny zaprojektowano pod kątem największego możliwego wydłużenia w granicy sprężystości. Celem jest stworzenie przy tym jak najbardziej jednorodnej strefy, w której można zastosować tensometr. Dzięki późniejszej ocenie wytrzymałości zgodnie z uznanymi wytycznymi FKM gwarantowana jest wytrzymałość zmęczeniowa czujników siły. W ten sposób czujniki siły firmy Baumer mogą być dynamicznie obciążane do siły nominalnej nawet przy ciągłej pracy z ponad 1 milionem cykli obciążenia.

Konstrukcje
Czujniki siły firmy Baumer są zwykle realizowane jako korpusy sprężyn membranowych. Decydującą zaletą jest ich bardzo mały rozmiar i ekonomiczna produkcja. Ponadto membranowe przetworniki siły mogą być zwykle bardzo dobrze uszczelnione hermetycznie i dlatego mogą być również stosowane w wymagających środowiskach. Dalszymi możliwymi konstrukcjami są na przykład korpusy sprężyn w kształcie litery S, cylindryczne korpusy sprężyn lub belek zginanych.

Kraftsensoren_Bauformen.jpg

Tensometry Mechanoelectrical converter

Tensometry są rdzeniem czujników siły i czujników tensometrycznych firmy Baumer i służą do rejestracji naprężeń na powierzchni materiału. Składają się one zwykle z folii nośnej (poliimidu), meandrującej siatki pomiarowej wykonanej z konstantanu i warstwy wierzchniej. Tensometry przekształcają naprężenie mechaniczne w zmianę rezystancji elektrycznej i działają jako konwerter mechaniczno-elektryczny. Zmiana rezystancji tensometru jest proporcjonalna i określana jako współczynnik k.
 
Konstrukcje
Tensometry metalowe do budowy przetworników są dostępne w różnych konstrukcjach. Oprócz typowych liniowych tensometrów, tensometry z rozetą T, tensometry z rozetą i tensometry na ścinanie to inne typowe konstrukcje:
DMS_Types.jpg

Obwód mostka Wheatstonea
Obwód mostka Wheatstonea to specjalne połączenie rezystorów elektrycznych, za pomocą którego można precyzyjnie zmierzyć zmiany rezystancji elektrycznej. Przy zastosowaniu pełnego obwodu mostka w konstrukcji czujnika, cztery tensometry są zawsze połączone ze sobą w ściśle określonym układzie. Obwód mostka składa się z dwóch połączonych równolegle dzielników napięcia, które są zasilane zasilaczem mostkowym UB ze wspólnego źródła napięcia.

Wheatstone'sche Brückenschaltung.jpg
Za pomocą obwodu mostka Wheatstonea można precyzyjnie rejestrować najmniejsze zmiany rezystancji. Zmiany w poszczególnych rezystancjach prowadzą do rozstrojenia mostka UA, które można łatwo zmierzyć. Sygnał pomiarowy mostka zachowuje się ratiometrycznie i jest proporcjonalny do napięcia zasilania. Typowy sygnał pomiarowy z czujników tensometrycznych siły mieści się w zakresie 0,43,0 mV/V.
 
Zachowanie temperatury
Zmiany temperatury podczas pomiaru stanowią wyzwanie dla czujników siły opartych na tensometrach. Zmiana temperatury o 10°C generuje bezwzględną zmianę długości o 0,012 mm dla 100 milimetrów stali. Dzięki doborowi odpowiedniego tensometru, z odpowiednim współczynnikiem rozszerzalności materiału, a także inteligentnemu połączeniu tensometrów zgodnie z obwodem mostka Wheatstonea, rozszerzenia wywołane zmianami temperatury mogą być w pełni skompensowane.

Wzmacniacz mostkowy Electrical Converter

Wzmacniacz mostkowy zasila mostek Wheatstonea stabilnym napięciem zasilającym. Wynikowy sygnał wyjściowy mostka jest wzmacniany i wyprowadzany albo analogowo (wyjście napięciowe / wyjście prądowe) albo przez interfejs cyfrowy (CAN/IO-Link). Wzmacniacze mostkowe firmy Baumer są obecnie dostępne z wyjściem napięciowym ± 10 VDC i wyjściem prądowym 420 mA.
Za pomocą wzmacniaczy mostkowych czujniki siły oparte na tensometrach można łatwo tarować w aplikacji, co umożliwia klientom wyeliminowanie przesunięć punktu zerowego podczas montażu. Kolejną zaletą pomiarów ze wzmacniaczami mostkowymi jest bardzo dobre zachowanie szumowe nawet w bardzo dynamicznych aplikacjach.

Podstawy fizyczne pomiaru siły

Czym jest siła i jak jest obliczana?
Siła F o jednostce Newton [N] jest iloczynem masy m w kg ciała i
przyspieszenia ziemskiego g w m/s2

Formel_Kraft.jpg

Przy masie 100 kg powstaje siła 1000 N. W praktyce stosuje się proste przybliżenie dla przyspieszenia grawitacyjnego g = 10 m/s2.

Czym jest naprężenie i jak jest obliczane?
Gdy tylko do ciała zostanie przyłożona siła, następuje ściskanie, gdy przykładana jest siła ściskająca, oraz naprężenie, gdy przykładana jest siła rozciągająca. Ta względna zmiana długości jest opisana jako naprężenie w [µm/m] i jest zdefiniowana jako stosunek bezwzględnej zmiany długości l do długości całkowitej l0.

Dehnung_Formel.jpg
Moduł sprężystości
Naprężenie doświadczane przez komponent zależy nie tylko od geometrii i siły, ale także od materiału komponentu. Decydującym parametrem jest moduł sprężystości. Opisuje proporcjonalną zależność między napięciem a naprężeniem podczas deformacji ciała stałego w liniowym zakresie sprężystości. Obowiązuje przy tym zasada: im sztywniejszy materiał, tym wyższy jego moduł sprężystości. Moduł sprężystości dla stali nierdzewnej powszechnie stosowanej w konstrukcji przetworników wynosi E = 200,000 N/mm2, a dla aluminium 70,000 N/mm2.

Od siły do ​​naprężania
Jak już opisano powyżej, każdy element obciążony siłą F również doświadcza jednocześnie pewnego naprężenia . Naprężenie to jest zawsze zależne od modułu sprężystości materiału E, przekroju materiału A i siły. Za pomocą tych trzech parametrów odkształcenie można obliczyć w następujący sposób:

Kraft-Dehnung_Formel1.jpg

Odpowiednie naprężenie komponentu oblicza się następująco:
 

Kraft-Dehnung_Formel2.jpg
Współczynnik k
Współczynnik k tensometru opisuje czułość tensometru. Jest to liniowa zależność między względną zmianą oporu a naprężeniem materiału.
 
k-faktor_Formel.jpg

Typowe współczynniki k dla tensometrów wynoszą 2,05 dla stałych siatek pomiarowych.

Równanie mostka Wheatstonea
Za pomocą rozszerzenia i współczynnika k można następnie obliczyć oczekiwany sygnał pomiarowy za pomocą równania mostka Wheatstonea. Przy typowej belce zginanej sygnał pomiarowy jest obliczany w następujący sposób:

Wheatstone'sche Brückenschaltung_Formel.jpg

Należy przy tym zauważyć, że dwa tensometry reagują na napięcie, a dwa tensometry na nacisk. W idealnej sytuacji wielkość rozszerzenia jest identyczna we wszystkich punktach pomiarowych.


Ograniczenie do pomiaru masy

Wielokrotnie zleca się kierownikom projektów lub inżynierom ds. rozwoju wykonywanie pomiarów masy maszyn budowlanych lub tym podobnych. Z fizycznego punktu widzenia nie ma szczególnych różnic między czujnikami siły, a ogniwami obciążnikowymi. Jedyną różnicą w stosunku do skalibrowanych ogniw obciążnikowych jest kalibracja czujników. W przeciwieństwie do ogniw obciążnikowych, czujniki siły są zawsze dostosowywane do określonej siły nominalnej w N zamiast określonej wagi w kg. Czujniki firmy Baumer są kalibrowane jako czujniki siły i służą do pomiaru siły.


Normy czujników siły

Parametry czujników siły są określone w wytycznych VDI 2638. Definicje zawarte w wytycznych umożliwiają stworzenie jednolitej terminologii językowej dla czujników siły, który umożliwia porównywanie danych technicznych. Więcej informacji na temat poszczególnych parametrów można znaleźć również w naszym słowniczku pomiaru siły.

Może Cię również zainteresować

Na szczyt